Section SV.1 – Solutions to the Practice Problems
1. {M, i, s, p}
2. {January, February, March, April, May, June, July, August, September, October, November, December}
3. The set of numbers 3, 6, and 9.
4. The set of letters a, e, i, o, u.
5. The set of all natural numbers that are multiples of 3.
6.
a. Equal (order doesn’t matter)
b. Equal (repeats don’t matter)
c. Equal (order and repeats don’t matter)
d. Not equal (not the same elements)
7.
a. Equal (order doesn’t matter)
b. Not equal (not the same elements)
c. Equal repeats don’t matter)
d. Equal (order and repeats don’t matter)
8.
a. Not a set (not well defined)
b. Set
c. Set
d. Not a set (not well defined)
9.
a. Not a set (not well defined)
b. Set
c. Not a set (not well defined)
d. Set
10.
a. Finite (it is a very large number)
b. Infinite
c. Finite (equal to the set {1 ,2 ,3, 4, 5, 6, 7, 8, 9})
d. Infinite (the set follows the pattern forever)
11.
a. Finite (it may be changing but it is not infinite)
b. Infinite
c. Infinite
d. Finite (equal to the set of letters in the alphabet)
12.
a. ⊈
b. ⊆
c. ⊆
d. ⊆
e. ⊈
f. ⊈
13.
a. ⊆
b. ⊆ and ⊂ (both)
c. ⊆ and ⊂ (both)
d. neither
14. Yes
15. Yes
16. No, the Moon is not a planet
17. Yes
18.
a. False, the empty set has no elements.
b. False, it would mean the set containing the empty set.
c. True, the empty set is a subset of every set.
19.
a. true
b. false
c. true
d. false
e. false
f. true
g. false
20.
a. false
b. false
c. true
d. true
e. false
f. true
g. false
21.
a. ⊂ and ⊆
b. ∈
c. ⊆ and ⊇
d. ⊃ and ⊇
e. ⊂ and ⊆
22.
a. ⊂ and ⊆
b. ⊂ and ⊆
c. ⊃ and ⊇
d. ⊆ and ⊇
e. ∈
23. B ⊂ A
24.
a. true
b. false, the set containing 7 is not an element of A.
c. true
d. true
e. false
f. true
25. {a, b, c, d}, {a, b, c}, {b, c, d}, {a, c, d}, {a, b, d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a}, {b}, {c}, {d}, { }
26. {Luke, Lea}, {Luke, Han}, {Lea, Han}, {Luke}, {Lea}, {Han}, { }
27. {Stuart, Kevin}, {Kevin, Bob}, {Stuart, Bob}, {Stuart}, {Kevin}, {Bob}, { }
28. number of subsets = 24 = 16, number of proper subsets = 15
29. number of subsets = 27 = 128, number of proper subsets = 127
30. 26 = 64 possible ways
31. 27 = 128 possible ways