9 Skeletal System

Learning Objectives

  • Apply the rules of medical language to build, analyze, spell, pronounce, abbreviate, and define terms as they relate to the musculoskeletal system
  • Identify meanings of keyword components of the musculoskeletal system
  • Use terms related to the musculoskeletal system

Skeletal System Word Parts

Click on prefixes, combining forms, and suffixes to reveal a list of word parts to memorize for the Musculoskeletal System.

Introduction to the Skeletal System

The skeletal system forms the framework of the body. It is the body system composed of bones, cartilage and ligaments.  Each bone serves a particular function and varies in size, shape and strength. Bones are weight-bearing structures in your body and can therefore change in thickness as you gain or lose weight. The skeletal system performs the following critical functions for the human body:

  • supports the body
  • facilitates movement
  • protects internal organs
  • produces blood cells
  • stores and releases minerals and fat

Skeletal System Medical Terms

Anatomy (Structures) of the Skeletal System

The skeletal system includes all of the bones, cartilages, and ligaments of the body that support and give shape to the body and body structures. The skeleton consists of the bones of the body. For adults, there are 206 bones in the skeleton. Younger individuals have higher numbers of bones because some bones fuse together during childhood and adolescence to form an adult bone. The primary functions of the skeleton are to provide a rigid, internal structure that can support the weight of the body against the force of gravity, and to provide a structure upon which muscles can act to produce movements of the body.

In addition to providing for support and movements of the body, the skeleton has protective and storage functions. It protects the internal organs, including the brain, spinal cord, heart, lungs, and pelvic organs. The bones of the skeleton serve as the primary storage site for important minerals such as calcium and phosphate. The bone marrow found within bones stores fat and houses the blood-cell producing tissue of the body.

The skeleton is subdivided into two major divisions: the axial and appendicular.

The Axial Skeleton

The axial skeleton forms the vertical, central axis of the body and includes all bones of the head, neck, chest, and back (see Figure 9.1). It serves to protect the brain, spinal cord, heart, and lungs. It also serves as the attachment site for muscles that move the head, neck, and back, and for muscles that act across the shoulder and hip joints to move their corresponding limbs.

The axial skeleton of the adult consists of 80 bones including the skull, the vertebral column, and the thoracic cage. The skull is formed by 22 bones. Also associated with the head are an additional seven bones, including the hyoid bone and the ear ossicles (three small bones found in each middle ear). The vertebral column consists of 24 bones, each called a vertebra, plus the sacrum and coccyx. The thoracic cage includes the 12 pairs of ribs, and the sternum, the flattened bone of the anterior chest.

This diagram shows the human skeleton and identifies the major bones. The left panel shows the anterior view (from the front) and the right panel shows the posterior view (from the back). Labels read (from the top of skull): skull (cranial portion, facial portion), pectoral shoulder girdle, clavicle, scapula, thoracic cage (sternum, ribs), upper limb (humerus, ulna, radius, carpals, meta carpals, phalanges), vertebral column, pelvic girdle (hip bones), lower limb (femur, patella, tibia, fibula, tarsals, metatarsals, phalanges).
Figure 9.1 Axial and Appendicular Skeleton. The axial skeleton supports the head, neck, back, and chest and thus forms the vertical axis of the body. It consists of the skull, vertebral column (including the sacrum and coccyx), and the thoracic cage, formed by the ribs and sternum. The appendicular skeleton is made up of all bones of the upper and lower limbs. From Betts, et al., 2021. Licensed under CC BY 4.0.

Did You Know?

The axial skeleton has 80 bones and includes bones of the skull (and face), vertebral column, and thoracic cage.

The cranium or skull supports the face and protects the brain. It is subdivided into the bones of the skull and the bones of the face.

Bones of the Skull

  • Frontal – forms the forehead
  • Parietal – the upper lateral sides of the cranium
  • Occipital – the posterior skull and base of the cranial cavity
  • Temporal – the lower lateral sides of the cranium
  • Sphenoid -the ‘keystone’ bone that forms part of the base of skull and eye sockets
  • Ethmoid – forms part of the nose and orbit and base of cranium
  • Auditory ossicles – the small bones of the middle ear
  • External auditory meatus – the external opening of ear and temporal bone

Bones of the Face

  • Zygomatic – the cheekbone
  • Maxillary – the upper jaw and hard palate
  • Palatine –  the lateral walls of the nose
  • Lacrimal – the walls of the orbit
  • Inferior conchae – the lower lateral wall of the nasal cavity
  • Vomer – the separates the left and right nasal cavity
  • Mandible – the lower jaw bone (The only movable bone of the skull)
  • Hyoid – the bone located between the mandible and larynx, not connected to other bones

Bones of the Vertebral Column

The vertebral column is also known as the spinal column or spine (see Figure 9.2). It consists of a sequence of vertebrae (singular = vertebra), each of which is separated and united by an intervertebral disc. Together, the vertebrae and intervertebral discs form the vertebral column. It is a flexible column that supports the head, neck, and body and allows for their movements. It also protects the spinal cord, which passes down the back through openings in the vertebrae.

This image shows the structure of the vertebral column. The left panel shows the front view of the vertebral column. Labels and the right panel shows the side view of the vertebral column. labels read (from top): 7 cervical vertebrae (C1-C7) form cervical curve, 12 thoracic vertebrae (T1-T12) form thoracic curve, intervertebral disc, 5 lumbar vertebrae (L1-L5) form lumbar curve, Fused vertebrae of sacrum and coccyx form sacrococcygeal curve, sacrum, coccyx.
Figure 9.2 Vertebral Column. The adult vertebral column consists of 24 vertebrae, plus the sacrum and coccyx. The vertebrae are divided into three regions: cervical C1–C7 vertebrae, thoracic T1–T12 vertebrae, and lumbar L1–L5 vertebrae. The vertebral column is curved, with two primary curvatures (thoracic and sacrococcygeal curves) and two secondary curvatures (cervical and lumbar curves). From Betts, et al., 2021. Licensed under CC BY 4.0.

Types of Vertebrae

  • Cervical – C1 to C7 – the first 7 vertebrae in the neck region
  • Thoracic – T1 to T12 – the next 12 vertebrae that forms the outward curvature of the spine
  • Lumbar – L1 to L5 – the next 5 vertebrae that forms the inner curvature of spine
  • Sacrum – the triangular-shaped bone at the base of the spine
  • Coccyx – the tailbone

Bones of the Thoracic Cavity

The thoracic cage (rib cage) forms the thorax (chest) portion of the body. It consists of the 12 pairs of ribs with their costal cartilages and the sternum (see Figure 9.3). The ribs are anchored posteriorly to the 12 thoracic vertebrae (T1–T12). The thoracic cage protects the heart and lungs.

This figure shows the skeletal structure of the rib cage. The left panel shows the anterior view of the sternum. Labels read (from top): clavicular notch, jugular notch, manubrium, sternal angle, body, xiphoid process. The right panel shows the anterior panel of the sternum including the entire rib cage. Labels read (from top): jugular notch, clavicular notch, clavicle, sternum (manubrium, body, xyphoid process), scapula, sternal angle, costal cartilages, intercostal space. Ribs are numbered 1-12 from the top.
Figure 9.3 Thoracic Cage. The thoracic cage is formed by the (a) sternum and (b) 12 pairs of ribs with their costal cartilages. The ribs are anchored posteriorly to the 12 thoracic vertebrae. The sternum consists of the manubrium, body, and xiphoid process. The ribs are classified as true ribs (1–7) and false ribs (8–12). The last two pairs of false ribs are also known as floating ribs (11–12). From Betts, et al., 2021. Licensed under CC BY 4.0.

Ribs

There are 12 sets of ribs and can be divided as such:

  •  7 true ribs as they are attached to the front of the sternum
  •  3 false ribs as they are attached to the cartilage that joins the sternum
  •  2 floating ribs as they are not attached to the front of the sternum

Sternum

The sternum, also known as the breast bone, is divided into 3 parts:

  • manubrium – the upper portion of the breast bone
  • body – the middle portion of the breast bone
  • xiphoid process – the lower portion of the breast bone and is made up of cartilage

Concept Check

Answer the following questions:

  • What is the medical term for the upper jaw bone and for the lower jaw bone?
  • How many bones make up the cervical region of the vertebral column?

The Appendicular Skeleton

The appendicular skeleton includes all bones of the upper and lower limbs, plus the bones that attach each limb to the axial skeleton. There are 126 bones in the appendicular skeleton of an adult.

Did You Know?

The appendicular skeleton has 126 bones. It is divided into the bones of the upper limbs and lower limbs that attach each limb to skeleton. (Betts, et al., 2021)

Bones of the Pectoral Girdle

  • Scapula – the shoulder blades
  • Clavicle – the collar bones. It connects the sternum to the scapula
  • Acromion – the extension that forms the bony point of the shoulder

Bones of the Upper Limbs

The bones of the upper limbs include the bones of the arms, wrists, and hands.

Bones of the Arm
  • Humerus – the bone in upper arm
  • Radius – the bone that runs thumb-side of the forearm
  • Ulna – the bone that runs on the side of the little finger of the forearm
Bones of the Wrist and Hand
  • Carpals – the wrist bones
  • Metacarpals – the bones in the palm of hand
  • Phalanges – the finger and toe bones

Each phalanx has three bones: the distal, medial, and proximal. The exception is the thumb and big toe which has two bones: distal and proximal. See Fig 9.4 below. There are 30 bones in each upper limb. Can you count them on your limb?

This diagram shows an anterior and posterior view of the hands with corresponding labels. Anterior view labels read (from top): middle finger, ring finger, index finger, little finger, thumb, phalanges (distal, proximal), metacarpals, carpals, ulna, radius. Posterior view lables read (frop top): Phalanges (distal, middle, proximal), head shaft and base of proximal phalange, head shaft and base of metatarsal, metatarsals 1-5, carpals, ulna, radius.
Figure 9.4 Bones of the Hands. From Betts, et al., 2021. Licensed under CC BY 4.0.

Bones of the Pelvic Region

The bones of the pelvic region protect the reproductive, urinary, and excretory organs.

  • Pelvic girdle – the hip or coxal bone.  It is formed by the fusion of three bones during adolescence
  • Illium – the largest part of the hip bone
  • Ischium – the lower portion of pelvic girdle
  • Pubis – the anterior portion of pelvic girdle
  • Pelvis – consists of four bones: the left and right hip bones as well as the sacrum and coccyx
  • Acetabulum – the large socket in the pelvic bones that holds the head of the femur

The shape of the pelvic girdle is different for males than females. In the male, it is a funnel shape. In the female it is shaped like a basin to accommodate for the fetus during pregnancy (see Figure 9.5).

Diagram of female and male pelvic bones.
Figure 9.5 Female and male pelvis, showing the hip bone, sacrum, pelvic brim and subpubic angle. From Betts et al. 2021. Licensed under CC BY 4.0.

Did you know?

The femur is the longest and strongest bone of the body, and accounts for approximately one-quarter of a person’s total height (Betts, et al., 2021).

Bones of the Lower Limbs

The bones of the lower limb include bones of the leg and the feet.

Bones of the Leg
  • Femur – the thigh bone and is also referred to the upper leg bone. It is the longest and strongest bone in the human body
  • Patella – the knee cap
  • Tibia –    the shin bone. It is a medial bone and the main weight-bearing bone of the lower leg
  • Fibula –  the smaller of the lower leg bone (see Figure 9.6)

 

This image shows the structure of the tibia and the fibula. The left panel shows the anterior view. Labels read (from top): lateral condyle, medial condyle, tibial tuberosity, anterior border, interosseous membrane, fibula, tibia, medial malleolus, lateral malleolus, articular surface.The right panel shows the posterior view. Labels read (from top): articular surface of medial and lateral condyles, medial condyle, head of fibula, soleal line, interosseous membrane, tibla, fibula, medial malleolus, lateral malleolus, articular surface.
Figure 9.6 Tibia and Fibula. The tibia is the larger, weight-bearing bone located on the medial side of the leg. The fibula is the slender bone of the lateral side of the leg and does not bear weight. From Betts, et al., 2021. Licensed under CC BY 4.0.
Bones of the Ankles and Feet
  • Tarsals – the ankle bones (7 total)
  • Malleous – the bony protrusions of the ankle bones
  • Talus – the superior ankle bones
  • Calcaneous – the heel bones
  • Metatarsals – the foot bones
  • Phalanges – the bones of the toes (see Figure 9.7)
Figure 9.7 Bones of the Foot. The bones of the foot are divided into three groups. The posterior foot is formed by the seven tarsal bones. The mid-foot has the five metatarsal bones. The toes contain the phalanges. From Betts, et al., 2021. Licensed under CC BY 4.0.

Concept Check

Answer the following questions:

  • Is the humerus the same as the funny bone?
  • What is the medical term for the kneecap?

Anatomy Labeling Activity

Physiology (Function) of the Skeletal System

The bones of the skeletal system is comprised of an inner spongy tissue referred to as bone marrow. There are two types of bone marrow, red and yellow. The red bone marrow produces the red blood cells and it does so by a process called hematopoiesis. The yellow bone marrow contains adipose tissues which can be a source of energy. The bones of the skeletal system also store minerals such as calcium and phosphate. These minerals are important for the physiological processes in the body and are released into the bloodstream when levels are low in the body.

Joints

Most bones connect to at least one other bone in the body. The area where bones meet bones or where bones meet cartilage are called articulations.  Joints can be classified based on their ability to move. At movable joints, the articulating surfaces of the adjacent bones can move smoothly against each other. However, other joints may be connected to each other by connective tissue or cartilage. These joints are designed for stability and provide for little or no movement. Importantly, joint stability and movement are related to each other. This means that stable joints allow for little or no mobility between the adjacent bones. Conversely, joints that provide the most movement between bones are the least stable.

Based on the function of joints, there are 3 types of joints:

Did You Know?

The left and right hip bones are connected by an amphiarthrosis joint.

  • Synarthrosis (sin-ahr-throh-seez) joints which allow no movement
    •  example: joints of the skull
  • Amphiarthrosis (am-fee-ahr-throh-sis) joints which allow some movement
    •  example: joints of the pubic symphysis
  • Diarthrosis (dahy-ahr-throh-seez) joints which allow for free movement
    •  example: joints of the knee

Structures associated with joints are:

  • Cartilage –  the elastic connective tissue that is found at the ends of bones, nose tip, etc.
  • Synovial membrane – the lining or covering of synovial joints
  • Synovial fluid – the lubricating fluid found between synovial joints
  • Ligaments – the tough, elastic connective tissue that connects bone to bone
  • Tendons – the fibrous connective tissue that attaches muscle to bone
  • Bursa – the closed, fluid-filled sacs that works as a cushion
  • Meniscus – C-shaped cartilage that act as shock absorbers between bones

Body Movements

Synovial joints are movable joints and provide most of the body movements.  Body movement occurs when the bones, joints and muscles work together.

This multi-part image shows different types of movements that are possible by different joints in the body. Labels read (from top, left): a and b angular movements: flexion and extension at the shoulders and knees, c) angular movements: flexion and extension of the neck (arrows pointing left and right to indicate movement). Labels (from bottom, left) read: d) angular movements: flexion and extension of the vertical column, e) angular movements abduction, adduction, and cicumduction of the upper limb at the shoulder, f) rotation of the head, neck, and lower limb
Figure 9.8 Movements of the Body, Part 1. Synovial joints give the body many ways in which to move. (a) and (b) Flexion and extension motions are in the sagittal (anterior and posterior) plane of motion. These movements take place at the shoulder, hip, elbow, knee, wrist, metacarpophalangeal, metatarsophalangeal, and interphalangeal joints. (c) and (d) Anterior bending of the head or vertebral column is flexion, while any posterior-going movement is extension. (e) Abduction and adduction are motions of the limbs, hand, fingers, or toes in the coronal (medial and lateral) plane of movement. Moving the limb or hand laterally away from the body, or spreading the fingers or toes, is abduction. Adduction brings the limb or hand toward or across the midline of the body, or brings the fingers or toes together. Circumduction is the movement of the limb, hand, or fingers in a circular pattern, using the sequential combination of flexion, adduction, extension, and abduction motions. Adduction/abduction and circumduction take place at the shoulder, hip, wrist, metacarpophalangeal, and metatarsophalangeal joints. (f) Turning of the head side to side or twisting of the body is rotation. Medial and lateral rotation of the upper limb at the shoulder or lower limb at the hip involves turning the anterior surface of the limb toward the midline of the body (medial or internal rotation) or away from the midline (lateral or external rotation). From Betts, et al., 2021. Licensed under CC BY 4.0.

Flexion and Extension

Flexion and extension are movements that take place within the sagittal plane and involve anterior or posterior movements of the body or limbs. For the vertebral column, flexion (anterior flexion) is an anterior (forward) bending of the neck or body, while extension involves a posterior-directed motion, such as straightening from a flexed position or bending backward. Lateral flexion is the bending of the neck or body toward the right or left side. These movements of the vertebral column involve both the joints as well as the associated intervertebral disc.

In the limbs, flexion decreases the angle between the bones (bending of the joint), while extension increases the angle and straightens the joint (see Figure 9.8(a-d)). You will discover in the muscular system chapter that the associated muscles to these movements are flexor and extensor.

Abduction and Adduction

Abduction and adduction motions occur within the coronal plane and involve medial-lateral motions of the limbs, fingers, toes, or thumb.  For example, abduction is raising the arm at the shoulder joint, moving it laterally away from the body, while adduction brings the arm down to the side of the body (see Figure 9.8(e)). In the muscular system chapter you will discover that the associated muscles to these movements are abductor and adductor.

Circumduction

Circumduction is the movement of a body region in a circular manner, in which one end of the body region being moved stays relatively stationary while the other end describes a circle. It involves the sequential combination of flexion, adduction, extension, and abduction at a joint (see Figure 9.8(e)).

Rotation

Rotation can occur within the vertebral column, at a pivot joint, or at a ball-and-socket joint. Rotation of the neck or body is the twisting movement produced by the summation of the small rotational movements available between adjacent vertebrae. At a pivot joint, one bone rotates in relation to another bone.

Rotation can also occur at the ball-and-socket joints of the shoulder and hip. Here, the humerus and femur rotate around their long axis, which moves the anterior surface of the arm or thigh either toward or away from the midline of the body (see see Figure 9.8(f)).

Movements of the body (part 2 of 2). Image described in figure caption.
Figure 9.9 Movements of the Body, Part 2. (g) Supination of the forearm turns the hand to the palm forward position in which the radius and ulna are parallel, while forearm pronation turns the hand to the palm backward position in which the radius crosses over the ulna to form an “X.” (h) Dorsiflexion of the foot at the ankle joint moves the top of the foot toward the leg, while plantar flexion lifts the heel and points the toes. (i) Eversion of the foot moves the bottom (sole) of the foot away from the midline of the body, while foot inversion faces the sole toward the midline. (j) Protraction of the mandible pushes the chin forward, and retraction pulls the chin back. (k) Depression of the mandible opens the mouth, while elevation closes it. (l) Opposition of the thumb brings the tip of the thumb into contact with the tip of the fingers of the same hand and reposition brings the thumb back next to the index finger. From Betts, et al., 2021. Licensed under CC BY 4.0.

Supination and Pronation

Supination and pronation are movements of the forearm. In the anatomical position, the upper limb is held next to the body with the palm facing forward. This is the supinated position of the forearm. In this position, the radius and ulna are parallel to each other. When the palm of the hand faces backward, the forearm is in the pronated position, and the radius and ulna form an X-shape.

Pronation is the movement that allows the palm of the hand to face backward while in supination the palm of the hand faces forward. It helps to remember that supination is the motion you use when scooping up soup with a spoon (see Figure 9.9(g)).

Dorsiflexion and Plantar Flexion

Dorsiflexion and plantar flexion are movements at the ankle joint, which is a hinge joint. Lifting the front of the foot, so that the top of the foot moves (upward) toward the anterior leg is dorsiflexion, while lifting the heel of the foot from the ground or pointing the toes downward is plantar flexion. These are the only movements available at the ankle joint (see Figure 9.9(h)).

Inversion and Eversion

Inversion and eversion are complex movements that involve the multiple plane joints among the tarsal bones of the posterior foot (intertarsal joints) and thus are not motions that take place at the ankle joint. Inversion is the turning of the foot to angle the bottom of the foot toward the midline, while eversion turns the bottom of the foot away from the midline. The foot has a greater range of inversion than eversion motion. These are important motions that help to stabilize the foot when walking or running on an uneven surface and aid in the quick side-to-side changes in direction used during active sports such as basketball, racquetball, or soccer (see Figure 9.9(i)).

Protraction and Retraction

Protraction and retraction are anterior-posterior movements of the scapula or mandible. Protraction of the scapula occurs when the shoulder is moved forward, as when pushing against something or throwing a ball. Retraction is the opposite motion, with the scapula being pulled posteriorly and medially, toward the vertebral column. For the mandible, protraction occurs when the lower jaw is pushed forward, to stick out the chin, while retraction pulls the lower jaw backward (see Figure 9.9(j)).

Depression and Elevation

Depression and elevation are downward and upward movements of the scapula or mandible. The upward movement of the scapula and shoulder is elevation, while a downward movement is depression. These movements are used to shrug your shoulders. Similarly, elevation of the mandible is the upward movement of the lower jaw used to close the mouth or bite on something, and depression is the downward movement that produces opening of the mouth (see Figure 9.9(k)).

Concept Check

  • Differentiate between pronation and supination.

Skeletal System Movement Terms

Medical Terms in Context

Common Skeletal System Abbreviations

Diagnostic Procedures

Common diagnostic procedures related specifically to the skeletal system include x-rays, bone mineral density testing, and arthroscopy.

  • X-rays are common diagnostic tests used to confirm or rule out fractures and broken bones. The radiation dose is low so it is considered a safe diagnostic test (U.S. Food and Drug Administration, 2020).
  • Dual x-ray absorptiometry (BMD), also called a bone mineral density test, is a test to determine osteoporosis by measuring the amount of bone mineral in a particular amount of bone (National Cancer Institute, 2021).
  • Arthroscopy is a common procedure performed by orthopedic surgeons to view the inside of a joint to diagnose and/or to repair joint problems. The patient is given a local anesthetic and the surgeon inserts an arthroscope through an incision in the skin. Depending on what the surgeons finds, a repair of the joint may take place during the procedure (Mayo Clinic Staff, 2018a).

Medical Specialties Related to the Skeletal System

Orthopedic Surgeon

Orthopedic Surgeons are medical doctors who complete specialized training in the prevention, diagnosis, treatment and surgery of disorders and diseases related to the musculoskeletal systems (American Academy of Orthopedic Surgeons, 2021). For more details please visit the American Academy of Orthopaedic Surgeons’s page on Orthopaedic Surgeons.

Rheumatologist

Rheumatologists are medical doctors who have additional training as internists with a sub-specialty in rheumatology. Many rheumatology disorders have an underlying autoimmune disorders. Subsequently, rheumatologists are interested in autoimmune disorders and their impact on multiple body systems including the musculoskeletal systems (American College of Rheumatology 2018). For more details please follow the link to the American College of Rheumatology’s web page called ‘What is a Rheumatologist?’

Doctor of Chiropractic (DC)/Chiropractor

A Doctor of Chiropractic (DC) completes a four-year doctoral graduate school program with at least 4,200 hours of clinical experience, and laboratory and course work. Chiropractors are trained in the prevention, assessment and treatment of the spine, muscular system and nervous system. Chiropractors focus on spinal adjustments, nutrition, and preventing injury without the use of pharmaceuticals or surgical procedures (American Chiropractic Association, 2021). To learn more visit the American Chiropractic Association website.

Physiotherapist

A physiotherapist has a Doctoral of Physical Therapy degree and has successfully completed the National Physical Therapy Examination. Physiotherapists use an evidenced-based approach when assessing and designing treatment plans for their clients. Treatments may include exercises, massage, joint manipulation, and occupational retraining (U.S. Bureau of Labor Statistics, 2021). To learn more please visit the U.S. Bureau of Labor Statistics web page on physical therapists.

Occupational Therapist

Occupational therapist helps people across the lifespan to do the things they want and need to do through the therapeutic use of daily activities (occupations). Occupational therapy practitioners enable people of all ages to live life to its fullest by helping them promote health, and prevent—or live better with—injury, illness, or disability. To learn more please visit the American Occupational Therapy Association webpage.

Certified Occupational Therapy Assistant

Certified occupational therapy assistants and aides help patients develop, recover, improve, as well as maintain the skills needed for daily living and working. To learn more please visit the Occupational Outlook Handbook: Occupational Therapy Assistants and Aides.

Physical Therapist

Physical therapists help people to maximize their quality of life. They work with people of all ages and abilities, and in a variety of settings. They help people rehabilitate from devastating injuries, manage chronic conditions, avoid surgery and prescription drugs, and create healthy habits. To learn more please visit: American Physical Therapy Association

Physical Therapist Assistants

Assist physical therapists in providing physical therapy treatments and procedures. May, in accordance with state laws, assist in the development of treatment plans, carry out routine functions, document the progress of treatment, and modify specific treatments in accordance with patient status and within the scope of treatment plans established by a physical therapist. Generally requires formal training. To learn more please visit: Physical Therapist Assistants.

References

American Academy of Orthopaedic Surgeons. (2021). Orthopaedic Surgeons: Restoring mobility and keeping our nation in motion. https://www.aaos.org/about/what-is-an-orthopaedic-surgeon/

American Chiropractic Association. (2021). Key Facts and Figures About the Chiropractic Profession. https://www.acatoday.org/News-Publications/Newsroom/Key-Facts

American College of Rheumatology. (2018). What is a Rheumatologist? https://www.rheumatology.org/I-Am-A/Patient-Caregiver/Health-Care-Team/What-is-a-Rheumatologist

American Occupational Therapy Association. (2021).What is Occupational Therapy.  https://www.aota.org/conference-events/otmonth/what-is-ot.aspx

American Physical Therapy Association. (2021). Careers in Physical Therapy. https://www.apta.org/your-career/careers-in-physical-therapy

Occupational Therapy Assistants and Aides. (Sept 2021). Occupational Outlook Handbook. https://www.bls.gov/ooh/healthcare/occupational-therapy-assistants-and-aides.htm

U.S. Bureau of Labor Statistics. (2021). Occupational Therapists. https://www.bls.gov/ooh/healthcare/physical-therapists.htm#tab-1

U.S. Bureau of Labor Statistics. (2021). Physical Therapist Assistants. https://www.bls.gov/oes/current/oes312021.htm#nat

U.S. Food and Drug Administration. (2020). Medical X-ray Imaging. https://www.fda.gov/radiation-emitting-products/medical-imaging/medical-x-ray-imaging

Test Yourself

Use these practice activities to review the concepts in this chapter. If you prefer, there is a printable version of these activities.

 

Identify meanings of key word components of the musculoskeletal system.

 

Apply the rules of medical language to pronounce, break into word parts, and define the following terms.

 

Use terms related to the musculoskeletalsystem:

Practice pronouncing and defining these musculoskeletal system movement terms.

 

Label the following skeletal system anatomy.

 

Place the given medical terms in context to complete the scenarios below.

 

Test your knowledge by answering the questions below.

Chapter Attributions

This chapter was adapted by Karen Hobbs from “Skeletal System” by Stacey Grimm; Coleen Allee; Elaine Strachota; Laurie Zielinski; Traci Gotz; Micheal Randolph; and Heidi Belitz. Licensed under a CC BY 4.0 license.

Media Attributions

The Skeletal System: Crash Course Anatomy & Physiology #19 by CrashCourse is licensed under the Standard YouTube license.

Radius & Ulna by UCDenver Anatomy Lab 3244 is licensed under the Standard YouTube license.

Joints: Crash Course Anatomy & Physiology #20 by CrashCourse is licensed under the Standard YouTube license.

definition

License

Icon for the Creative Commons Attribution 4.0 International License

Medical Terminology Copyright © 2024 by Phoenix College Nursing is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

Share This Book