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Introduction 

What will you learn? 

• What is statistical thinking? 
• How data is organized, described, and how inferences are 

made about data 
• What are the different statistical tests out there? When 

can they be used? How do you interpret them? 
• How to critically evaluate statistics 
• How to be a wise consumer of psychological information, 

by understanding statistics, to make better decisions for 
your health and well-being! 

Many careers use statistics!  Although you are likely taking this 
course as your degree path requires it, you will find this class 
is important for you to be a good consumer of statistics and 
data literacy. This book takes on a more traditional approach 
to teaching statistics laying the foundation with computational 
formulas for descriptive and inferential statistics. 

Quick overview of the 3 units in this textbook 

Unit 1: The first unit in this course will introduce you to the 
principles of statistics and why we study and use them in the 
behavioral sciences. It covers the basic terminology and 
notation used for statistics, as well as how behavioral sciences 
think about, use, interpret, and communicate information and 
data. The unit concludes with a brief introduction to concepts 
in probability and sampling that underlie how scientists 
perform data analysis. The material in this unit serves as the 
building blocks for the logic and application of hypothesis 
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testing, which is introduced in unit 2 and comprises the rest of 
the material in the course. Unit 1 reviews material in 8 chapters. 

Unit 2: In unit 1, we learned the basics of statistics – what 
they are, how they work, and the mathematical and conceptual 
principles that guide them. In this unit, we will learn to use 
everything from the previous unit to test hypotheses, formal 
statements of research questions that form the backbone of 
statistical inference and scientific progress. This unit focuses 
on hypothesis tests about means, and unit 3 will continue to 
use hypothesis testing for other types of data, statistics, and 
relations. Unit 2 covers chapters 9 to 15. 

Unit 3: The last unit in this course introduces you to analyzing 
data beyond having the predictor (independent) variable as 
categorical (nominal) with a continuous (interval/ratio) 
dependent variable. In this final unit we continue to use the 
same hypothesis testing logic and procedures on new types 
of data.  We start with hypotheses using only continuous data 
and then look at a different kind of test statistic: a non-
parametric statistic for only categorical data. With the basics of 
statistics covered in the textbook, the last chapter focuses on 
considerations for doing reproducible research. 

 
Attribution: 
The contents of this work have been adapted from the 

following Open Access Resources: 
Poldrack, Russell A. (2021). Statistical Thinking for the 21st 

Century, Available at: https://open.umn.edu/opentextbooks/
textbooks/statistical-thinking-for-the-21st-century 

Foster, Garett C.; Lane, David; Scott, David; Hebl, Mikki; 
Guerra, Rudy; Osherson, Dan; and Zimmer, Heidi, “An 
Introduction to Psychological Statistics” (2018). Open 
Educational Resources Collection. 4. Available at: 
https://irl.umsl.edu/oer/4 
Online Statistics Education: A Multimedia Course of Study 
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(http://onlinestatbook.com/). Project Leader: David M. Lane, 
Rice University. 

Some of the text in the chapter also came from readings 
written by Lisa Degiorgio Worthy, Glendale Community College 
(AZ). 

Changes to the previous works to tailor the text to fit the 
needs of the introductory statistics course for Maricopa County 
Community College students. Materials from the original 
sources have been combined, reorganized, and added to by 
the current author, and any conceptual, mathematical, or 
typographical errors are the responsibility of the current 
author. 
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1.  Chapter 1: 
Introduction to 
Statistics 

What are statistics? 

Statistics include numerical facts and figures. For instance: 

• The largest earthquake measured 9.2 on the Richter scale. 
• Men are at least 10 times more likely than women to 

commit murder. 
• One in every 8 South Africans is HIV positive. 
• By the year 2020, there will be 15 people aged 65 and over 

for every new baby born. 

The study of statistics involves math and relies upon 
calculations of numbers. But it also relies heavily 
on how the numbers are chosen and how the 
statistics are interpreted. 

Statistical reasoning involves how 
numbers are chosen and how statistics 
are interpreted. Consider the following 
three scenarios and the interpretations 
based upon the presented statistics. You 
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will find that the numbers may be right, 
but the interpretation may be wrong. 

Try to identify a major flaw with each 
interpretation before we describe it. 

1. A new advertisement for Ben and Jerry’s ice 
cream introduced in late May of last year 
resulted in a 30% increase in ice cream sales 
for the following three months. Thus, the 
advertisement was effective. 

2. The more churches in a city, the more crime 
there is. Thus, churches lead to crime. 

3. 75% more interracial marriages are occurring 
this year than 25 years ago. Thus, our society 
accepts interracial marriages. 

What did you come up with? 

1. A new advertisement for Ben and Jerry’s ice 
cream introduced in late May of last year 
resulted in a 30% increase in ice cream sales 
for the following three months. Thus, the 
advertisement was effective. A major flaw is 
that ice cream consumption generally 
increases in the months of June, July, and 
August regardless of advertisements. This 
effect is called a history effect and leads 
people to interpret outcomes as the result of 
one variable when another variable (in this 
case, one having to do with the passage of 
time) is actually responsible. 

2. The more churches in a city, the more crime 
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there is. Thus, churches lead to crime. A major 
flaw is that both increased churches and 
increased crime rates can be explained by 
larger populations. In bigger cities, there are 
both more churches and more crime. This 
problem, which we will discuss in more detail 
in unit 2, refers to the third-variable problem. 
Namely, a third variable can cause both 
situations; however, people erroneously believe 
that there is a causal relationship between the 
two primary variables rather than recognize 
that a third variable can cause both. 

3. 75% more interracial marriages are occurring 
this year than 25 years ago. Thus, our society 
accepts interracial marriages. A major flaw is 
that we don’t have the information that we 
need. What is the rate at which marriages are 
occurring? Suppose only 1% of marriages 25 
years ago were interracial and so now 1.75% of 
marriages are interracial (1.75 is 75% higher 
than 1). But this latter number is hardly 
evidence suggesting the acceptability of 
interracial marriages. In addition, the statistic 
provided does not rule out the possibility that 
the number of interracial marriages has seen 
dramatic fluctuations over the years and this 
year is not the highest. Again, there is simply 
not enough information to understand fully 
the impact of the statistics. 

As a whole, the three examples above show that 
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statistics are not only facts and figures; they are 
something more than that-they are numbers 
measured for some purpose. In the broadest sense, 
“statistics” refers to a range of techniques and 
procedures for analyzing, interpreting, displaying, 
and making decisions based on data. 

Statistics is the language of science and data. 
The ability to understand and communicate using 
statistics enables researchers from different labs, 
different languages, and different fields to 
articulate to one another exactly what they have 
found in their work. It is an objective, precise, and 
powerful tool in science and in everyday life. 

What statistics are not. 

Many psychology, social science, and nursing 
students dread the idea of taking a statistics 
course, and more than a few have changed 
majors upon learning that it is a requirement. 
That is because many students view statistics as 
a math class, which is actually not true. While 
many of you will not believe this or agree with it, 
statistics isn’t math. Although math is a central 
component of it, statistics is a broader way of 
organizing, interpreting, and communicating 
information in an objective manner. Indeed, 
great care has been taken to eliminate as much 
math from this course as possible. Statistics is a 
way of viewing reality as it exists around us in a 
way that we otherwise could not. 
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Why do we study statistics? 

Virtually every student of the behavioral sciences 
takes some form of statistics class. This is because 
statistics is how we communicate in science. It 
serves as the link between a research idea and 
usable conclusions. Without statistics, we would be 
unable to interpret the massive amounts of 
information contained in data. Even small datasets 
contain hundreds – if not thousands – of numbers, 
each representing a specific observation we made. 
Without a way to organize these numbers into a 
more interpretable form, we would be lost, having 
wasted the time and money of our participants, 
ourselves, and the communities we serve. 

Beyond its use in science, however, there is a more 
personal reason to study statistics. Like most people, 
you probably feel that it is important to “take control 
of your life.” But what does this mean? Partly, it 
means being able to properly evaluate the data and 
claims that bombard you every day. If you cannot 
distinguish good from faulty reasoning, then you are 
vulnerable to manipulation and to decisions that are 
not in your best interest. Statistics provides tools that 
you need in order to react intelligently to information 
you hear or read. In this sense, statistics is one of the 
most important things that you can study. 

To be more specific, here are some claims that we 
have heard on several occasions. (We are not saying 
that each one of these claims is true!) 

• 4 out of 5 dentists recommend Dentine. 
• Almost 85% of lung cancers in men and 45% in women are 

tobacco-related. 
• Condoms are effective 94% of the time. 
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• People tend to be more persuasive when they look others 
directly in the eye and speak loudly and quickly. 

• Women make 75 cents to every dollar a man makes when 
they work the same job. 

• A surprising new study shows that eating egg whites can 
increase one’s life span. 

• People predict that it is very unlikely there will ever be 
another baseball player with a batting average over 400. 

• There is an 80% chance that in a room full of 30 people 
that at least two people will share the same birthday. 

• 79.48% of all statistics are made up on the spot. 

All of these claims are statistical in character. We 
suspect that some of them sound familiar; if not, 
we bet that you have heard other claims like them. 
Notice how diverse the examples are. They come 
from psychology, health, law, sports, business, etc. 
Indeed, data and data interpretation show up in 
discourse from virtually every facet of contemporary 
life. 

Statistics are often presented in an effort to add 
credibility to an argument or advice. You can see this 
by paying attention to advertisements. Many of the 
numbers thrown about in this way do not represent 
careful statistical analysis. They can be misleading 
and push you into decisions that you might find 
cause to regret. For these reasons, learning about 
statistics is a long step towards taking control of your 
life. (It is not, of course, the only step needed for this 
purpose.) The purpose of this course is to help you 
learn statistical essentials and help prepare you for 
a career in psychology, nursing, counseling, physical 
therapy, occupational therapy, or other fields that use 
evidence-based decision making. Most importantly, 
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taking this course will make you into an intelligent 
consumer of statistical claims. 

You can take the first step right away. To be an 
intelligent consumer of statistics, your first reflex 
must be to question the statistics that you 
encounter. The British Prime Minister Benjamin 
Disraeli is quoted by Mark Twain as having said, 
“There are three kinds of lies — lies, damned lies, 
and statistics.” This quote reminds us why it is so 
important to understand statistics. So let us invite 
you to reform your statistical habits from now on. No 
longer will you blindly accept numbers or findings. 
Instead, you will begin to think about the numbers, 
their sources, and most importantly, the procedures 
used to generate them. 

The above section puts an emphasis on defending 
ourselves against fraudulent claims wrapped up as 
statistics, but let us look at a more positive note. 
Just as important as detecting the deceptive use 
of statistics is the appreciation of the proper use of 
statistics. You must also learn to recognize statistical 
evidence that supports a stated conclusion. 
Statistics are all around you, sometimes used well, 
sometimes not. We must learn how to distinguish 
the two cases. In doing so, statistics might be the 
course you use most in your day to day life, even if 
you do not ever run a formal analysis again. You will 
use statistical thinking! 

What is statistical thinking? 
“Statistical thinking will one day be as necessary for efficient 

citizenship as the ability to read and write.” – H.G. Wells 

Statistical thinking is a way of understanding a complex world 
by describing it in relatively simple terms that nonetheless 
capture essential aspects of its structure or function, and that 
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also provide us some idea of how uncertain we are about that 
knowledge. The foundations of statistical thinking come 
primarily from mathematics and statistics, but also from 
computer science, psychology, and other fields of study. 

We can distinguish statistical thinking from other forms of 
thinking that are less likely to describe the world accurately. 
In particular, human intuition often tries to answer the same 
questions that we can answer using statistical thinking, but 
often gets the answer wrong. For example, in recent years most 
Americans have reported that they think that violent crime was 
worse compared to the previous year (Pew Research Center). 
However, a statistical analysis of the actual crime data shows 
that in fact violent crime has steadily decreased since the 
1990’s. Intuition fails us because we rely upon best guesses 
(which psychologists refer to as heuristics) that can often get 
it wrong. For example, humans often judge the prevalence of 
some event (like violent crime) using an availability heuristic 
– that is, how easily can we think of an example of violent 
crime. For this reason, our judgments of increasing crime rates 
may be more reflective of increasing news coverage, in spite 
of an actual decrease in the rate of crime. Statistical thinking 
provides us with the tools to more accurately understand the 
world and overcome the biases of human judgment 

Dealing with statistics anxiety 

Many people come to their first statistics class with a lot of 
trepidation and anxiety. Learning statistics, like learning in 
general, takes knowledgeable teachers, willing students, and, 
most importantly, a great deal of time and practice. Learning 
statistics is like learning a language. The symbols and notation 
make up the rules of grammar and the terminology is the 
vocabulary. Doing the homework is like practicing the 

12  |  What is statistics?

http://www.pewresearch.org/fact-tank/2018/01/30/5-facts-about-crime-in-the-u-s/


conversation of statistics. Becoming fluent (and staying fluent) 
in statistics requires practice and continuous use. 

Questionnaires can be used to survey students prior to the 
first class in order to measure their attitude towards statistics, 
asking them to rate a number of statements on a scale of 1 
(strongly disagree) to 7 (strongly agree). One of the items on 
the statistical attitudes survey is “The thought of being enrolled 
in a statistics course makes me nervous”. In a recent class, 
almost two-thirds of the class responded with a five or higher, 
and about one-fourth of the students said that they strongly 
agreed with the statement. So if you feel nervous about 
starting to learn statistics, you are not alone. 

Anxiety feels uncomfortable, but psychology tells us that 
some emotional arousal can actually help us perform better 
on some tasks, by focusing our attention. So if you start to 
feel anxious about the material in this book, remind yourself 
that many other students are feeling similarly, and that this 
emotional arousal could actually help you learn the material 
better (even if it doesn’t seem like it!). 

Tips for Statistics Anxiety                                              
                                                                                                   
                    1. Learn stress management and 
relaxation techniques. 
Techniques such as deep breathing and meditation 
that help you to relax in any stressful situation can 
also be helpful when dealing with the nervousness 
and tension that affect students with math anxiety. 
2. Combat negative thinking. 
Lack of confidence can be a major impediment for 
students with math anxiety. Replace those negative 
thoughts (“I can’t do this”, “I’ve never been good at 
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math”, “I won’t finish in time”) with confidence-
building affirmations (“I know this”, “I’m prepared”, “I 
can do this”). 
3. Visualize yourself succeeding. 
Athletes use the technique of “visualization” to 
prepare for major competitions. Imagine yourself 
being relaxed doing math and during a test and 
confidently solving the problems. 
4. Do “easiest” problems first. 
Build up your confidence by first doing those 
problems in an assignment or on a test that you 
“know” best. It’ll help you relax when you tackle the 
“harder” stuff. 
5. Channel your stress into something else. 
Free up your mind by relieving some of your 
physical responses to stress. Get up and run around 
the hall for a minute before the test or squeeze a 
stress ball like crazy during the test. 
6. Start preparing early. 
If you try to “cram” the material quickly, you are 
likely to forget it quickly too. If you practice the 
material over a period of time, you will have a better 
understanding of it and are less likely to forget it 
when under stress. 
7. Take care of yourself. 
Although it’s not easy when you’re in school, eating 
and sleeping well helps your body and mind 
function to their fullest potential. 
8. Try to understand the “why” of statistical 
concepts rather than memorizing them. 
The first thing to go when you are under stress is 
your short-term memory. This is one reason it is so 
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important to understand that math is not just a set 
of rules that you have to memorize but that each 
concept builds on what came before. If you 
understand the reason behind the rules, you will 
remember the concepts better and be able to apply 
them in many different types of problems (not just 
ones you’ve seen before). 
9. Reward yourself for hard work. 
After completing a difficult assignment or an exam, 
it’s time to give yourself a break. 

What can statistics do for us? 

There are three major things that we can do with statistics: 

1. Describe: The world is complex and we often need to 
describe it in a simplified way that we can understand. 

2. Decide: We often need to make decisions based on data, 
usually in the face of uncertainty. 

3. Predict: We often wish to make predictions about new 
situations based on our knowledge of previous situations. 

Let’s look at an example of these in action, centered on a 
question that many of us are interested in: How do we decide 
what’s healthy to eat? There are many different sources of 
guidance; government dietary guidelines, diet books, and 
bloggers, just to name a few. Let’s focus in on a specific 
question: Is saturated fat in our diet a bad thing? 

One way that we might answer this question is common 
sense. If we eat fat, then it’s going to turn straight into fat in our 
bodies, right? And we have all seen photos of arteries clogged 
with fat, so eating fat is going to clog our arteries, right? 
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Another way that we might answer this question is by 
listening to authority figures. The Dietary Guidelines from the 
US Food and Drug Administration have as one of their Key 
Recommendations that “A healthy eating pattern limits 
saturated fats”. You might hope that these guidelines would 
be based on good science, and in some cases they are, but as 
Nina Teicholz outlined in her book “Big Fat Surprise”(Teicholz 
2014), this particular recommendation seems to be based more 
on the longstanding dogma of nutrition researchers than on 
actual evidence. 

Finally, we might look at actual scientific research. Let’s start 
by looking at a large study called the PURE (Prospective Urban 
Rural Epidemiology) study, which has examined diets and 
health outcomes (including death) in more than 135,000 
people from 18 different countries. In one of the analyses of this 
dataset (published in The Lancet in 2017; Dehghan et al. (2017)), 
the PURE investigators reported an analysis of how intake of 
various classes of macronutrients (including saturated fats and 
carbohydrates) was related to the likelihood of dying during 
the time that people were followed. People were followed for 
a median of 7.4 years, meaning that half of the people in the 
study were followed for less and half were followed for more 
than 7.4 years. Figure 1 plots some of the data from the study 
(extracted from the paper), showing the relationship between 
the intake of both saturated fats and carbohydrates and the 
risk of dying from any cause. 
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Figure 1: A plot of data from the PURE study, showing the 
relationship between death from any cause and the relative 
intake of saturated fats and carbohydrates. 

This plot is based on ten numbers. To obtain these numbers, 
the researchers split the group of 135,335 study participants 
(which we call the “sample”) into 5 groups (“quintiles”) after 
ordering them in terms of their intake of either of the nutrients; 
the first quintile contains the 20% of people with the lowest 
intake, and the 5th quintile contains the 20% with the highest 
intake. 

The researchers then computed how often people in each of 
those groups died during the time they were being followed. 
The figure expresses this in terms of the relative risk of dying 
in comparison to the lowest quintile: If this number is greater 
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than one, it means that people in the group are more likely to 
die than are people in the lowest quintile, whereas if it’s less 
than one, it means that people in the group are less likely to 
die. Figure 1.1 is pretty clear: People who ate more saturated fat 
were less likely to die during the study, with the lowest death 
rate seen for people who were in the fourth quintile (that is, 
who ate more fat than the lowest 60% but less than the top 
20%). The opposite is seen for carbohydrates; the more carbs a 
person ate, the more likely they were to die during the study. 
This example shows how we can use statistics to describe a 
complex dataset in terms of a much simpler set of numbers; if 
we had to look at the data from each of the study participants 
at the same time, we would be overloaded with data and it 
would be hard to see the pattern that emerges when they are 
described more simply. 

The numbers in Figure 1 seem to show that deaths decrease 
with saturated fat and increase with carbohydrate intake. This 
large-scale study also had some methodological challenges 
controlling for socioeconomic factors and measurement of 
dietary intake data. We also know that there is a lot of 
uncertainty in the data; there are some people who died early 
even though they ate a low-carb diet, and, similarly, some 
people who ate a ton of carbs but lived to a ripe old age. Given 
this variability, we want to decide whether the relationships 
that we see in the data are large enough that we wouldn’t 
expect them to occur randomly if there was not truly a 
relationship between diet and longevity. Statistics provide us 
with the tools to make these kinds of decisions. But as we 
will see throughout the book, this need for black-and-white 
decisions based on fuzzy evidence can lead researchers astray. 

Based on the data we would also like to make predictions 
about future outcomes. For example, a life insurance company 
might want to use data about a particular person’s intake of 
fat and carbohydrate to predict how long they are likely to 
live. An important aspect of prediction is that it requires us 
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to generalize from the data we already have to some other 
situation, often in the future; if our conclusions were limited to 
the specific people in the study at a particular time, then the 
study would not be very useful. In general, researchers must 
assume that their particular sample is representative of a larger 
population, which requires that they obtain the sample in a 
way that provides an unbiased picture of the population. For 
example, if the PURE study had recruited all of its participants 
from religious sects that practice vegetarianism, then we 
probably wouldn’t want to generalize the results to people who 
follow different dietary standards. 

The big ideas of statistics 

One way to think of statistics is as a set of tools that enable 
us to learn from data. 

There are two main branches of statistical analysis, 
descriptive statistics and inferential statistics. 

• Statistics that are used to organize and summarize the 
information so that the researcher can see what 
happened during the research study and can also 
communicate the results to others are called descriptive 
statistics. The first unit of the book is focused on 
descriptive statistics. 

• Statistics that help the researcher to answer the general 
research question by determining exactly what 
conclusions are justified based on the results that were 
obtained are referred to as inferential statistics. 

Statistics provides us with the tools to characterize 
uncertainty, to make decisions under uncertainty, and to 
make predictions whose uncertainty we can quantify. For 
example, we now know that cigarette smoking causes lung 
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cancer, but this causation is probabilistic: A 68-year-old man 
who smoked two packs a day for the past 50 years and 
continues to smoke has a 15% (1 out of 7) risk of getting lung 
cancer, which is much higher than the chance of lung cancer 
in a nonsmoker. However, it also means that there will be many 
people who smoke their entire lives and never get lung cancer. 

One often sees journalists write that scientific researchers 
have “proven” some hypothesis. But statistical analysis can 
never “prove” a hypothesis, in the sense of demonstrating that 
it must be true (as one would in a logical or mathematical 
proof). Statistics can provide us with evidence, but it’s always 
tentative and subject to the uncertainty that is always 
present in the real world. 

The concept of aggregation implies that we can make useful 
insights by collapsing across data – but how much data do we 
need? The idea of sampling says that we can summarize an 
entire population based on just a small number of samples 
from the population, as long as those samples are obtained 
in the right way.  As we already discussed above, the way that 
the study sample is obtained is critical, as it determines how 
broadly we can generalize the results. Another fundamental 
insight about sampling is that while larger samples are always 
better (in terms of their ability to accurately represent the 
entire population), there are diminishing returns as the sample 
gets larger. In fact, the rate at which the benefit of larger 
samples decreases follows a simple mathematical rule, 
growing as the square root of the sample size, such that in 
order to double the precision of our estimate we need to 
quadruple the size of our sample. 

Study design is also important part of statistical thinking 
— remember correlation and causation.  Any introduction to 
psychology course and introductory statistics will often teach 
that “correlation does not imply causation”, though the 
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renowned data visualization expert Edward Tufte has added, 
“but it sure is a hint.” 

We will examine more about study design and types of data 
in our next chapter! 

Learning Objectives 

1.  Define statistical thinking and why we use statistics. 
2. Practice ways to reduce statistical anxiety. 
3. Identify how statistical techniques fit into the general 

process of science. 

Exercises – Chapter 1 

1. Reflect on a statistics that you have encountered in daily 
life. How can you apply statistical thinking? 

2. What are two reasons that you identified for why taking a 
course in statistics is important? 

3. How would you define statistics to a friend, neighbor, 
family member? Define statistics from what you have 
learned so far. 

4. Review the tips for statistical anxiety and reflect on how 
you can implement at least one tip to help you succeed in 
the course. 
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2.  Chapter 2 Types of 
Data, How to Collect 
Them & More 
Terminology 

Types of Data and How to Collect Them 

In order to use statistics, we need data to analyze. Data come 
in an amazingly diverse range of formats, and each type gives 
us a unique type of information. In virtually any form, data 
represent the measured value of variables. A variable is simply 
a characteristic or feature of the thing we are interested in 
understanding. Let’s imagine we want to conduct a study to 
measure the stress level of students who are taking PSY 230. 
We will administer the survey during the first week of the 
course. One question we will ask is, “How stressed have you 
been in the last 2 weeks, on a scale of 0 to 10, with 0 being not 
at all stressed and 10 being as stressed as possible?” 

• Variable is a condition or characteristic that can take on 
different values. In our example, the variable was stress, 
which can take on any value between 0 and 10. Height is a 
variable. Social class is a variable. One’s score on a 
creativity test is a variable. The number of people absent 
from work on a given day is a variable. In psychology, we 
are interested in people, so we might get a group of 
people together and measure their levels of anxiety (a 
variable) or their physical health (another variable). You get 
the point. Pretty much anything we can count or measure 
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can be a variable. 

◦ Once we have data on different variables, we can use 
statistics to understand if and how they are related. 

• A value is just a number, such as 4, – 81, or 367.12. A value 
can also be a category (word), such as male or female, or a 
psychological diagnosis (major depressive disorder, post-
traumatic stress disorder, schizophrenia). 

◦ We will learn more about values and types of data a 
little later in this chapter. 

• Each person studied has a particular score that is his or 
her value on the variable. As we’ve said, your score on the 
stress variable might have a value of 6. Another student’s 
score might have a value of 8. 

We also need to understand the nature of our data: what they 
represent and where they came from.  We will briefly review 
some keys to understanding statistical studies. 

Tips to understanding statistical studies 
Here are a few key considerations for evaluating studies 

using statistics. 

1. Know the basic components of a statistical investigation. 
2. Know the sample.  Identify if using a representative 

sample. 
3. Identify the sample size. Evaluate if using a large enough 

sample. 
4. Understand and evaluate the study design. 
5. Identify type of data working with. 
6. Understand the statistics used. 
7. Evaluate conclusions made from statistical findings. 
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The basic components to a statistical investigation 

• Planning the study: Start by asking a testable research 
question and deciding how to collect data. For example, 
how long was the study period of the study? How many 
people were recruited for the study, how were they 
recruited, and from where? How old were they? What 
other variables were recorded about the individuals, such 
as smoking habits, on the comprehensive lifestyle 
questionnaires? 

• Examining the data: What are appropriate ways to 
examine the data? What graphs are relevant, and what do 
they reveal? What descriptive statistics can be calculated 
to summarize relevant aspects of the data, and what do 
they reveal? What patterns do you see in the data? Are 
there any individual observations that deviate from the 
overall pattern, and what do they reveal? 

• Inferring from the data: What are valid statistical 
methods for drawing inferences “beyond” the data you 
collected? Is a 10%–15% reduction in risk of death 
something that can happen just by chance? 

• Drawing conclusions: Based on what you learned from 
your data, what conclusions can you draw? Who do you 
think these conclusions apply to? Can you draw a cause-
and-effect conclusion about your treatment? (note: we are 
about to learn more about the study design needed for 
this) 

Notice that the numerical analysis (“crunching numbers” on 
the computer) comprises only a small part of the overall 
statistical investigation. In this module, you will see how we 
can answer some of these questions and what questions you 
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should be asking about any statistical investigation you read 
about. In the end, statistics provides us a way to give a very 
objective “yes” or “no” answer to the question, “is this treatment 
or intervention effective and, if so, how effective is it?” Nearly all 
statistical techniques boil down to answering these questions. 
Statistics is all about helping make correct and reliable 
decisions in our chosen field of study. But even if you never 
plan on conducting research or pursuing a career where you 
have to use statistics, the material in this course will help you 
in your daily life. In today’s world of instant gratification, 
information overload, and the 24-hour news cycle, statistics are 
thrown at us nonstop. Soon, you will be able to determine if the 
person or group providing these statistics is being honest or 
manipulating the data to suit their ideas. 

Let’s learn a little bit more about what is needed to know to 
better understand statistics. 

Who are your participants? Who is your 
population? 

Research in psychology typically begins with a general 
question about a specific group (or groups) of individuals or 
animals. For example, a researcher might want to know how 
many homeless people live on the streets of Phoenix. Or a 
researcher might want to know how often married people have 
sex, as reported by partners separately. In the first example, 
the researcher is interested in the group of homeless people. 
In the second example, the researcher may study heterosexual 
couples and compare the group of men with the group of 
women. In statistics, we call the entire group that a researcher 
wishes to study a population. As you can well imagine, a 
population can be quite large; for example, any student 
enrolled in college. A researcher might be more specific, 
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limiting the population for a study to college students who 
have successfully completed a statistics course and who live in 
the United States. 

Populations can obviously vary in size from extremely large 
to very small, depending on how the researcher defines the 
population. The population being studied should always be 
identified by the researcher. In addition, the population can 
include more than people and animals. A population could 
be corporations, parts produced in a factory, or anything else 
a researcher wants to study. Because populations tend to be 
very large it usually is impossible for a researcher to examine 
every individual in the population of interest. It is typically not 
feasible to collect data from an entire population. Therefore, 
researchers typically select a smaller, more manageable group 
from the population and limit their studies to the individuals in 
the selected group. A smaller more manageable group, known 
as a sample, is used to measure populations. 

The participants in the research are the sample, and the 
larger group the sample represents is the population.  In 
statistical terms, a set of individuals selected from a population 
is called a sample . A sample is intended to be representative 
of its population, and a sample should always be identified in 
terms of the population from which it was selected. As with 
populations, samples can vary in size. For example, one study 
might examine a sample of only 10 autistic children, and 
another study might use a sample of more than 10,000 people 
who take specific cholesterol medication. The sample is 
intended to represent the population in a research study. 

When describing data it is necessary to distinguish whether 
the data come from a population or a sample. 

• If data describe a sample it is called a statistic. 
• If data describe a population it is called a parameter. 

If I had given a statistical attitudes survey to the class, the class 
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would be my sample.  I might be interested in all students 
taking a statistics class for the first time, generalizing my 
findings to all statistics students would be applying 
information from my sample to a population.  While it might 
be convenient for me to ask my class, does my class best 
represent all students taking statistics? I would need to 
carefully consider selecting the best sample for a population or 
critically think about the limits for generalizing my findings to 
a population. While our results would be most accurate if we 
could study the entire population rather than a sample from 
it, in most research situations this is not practical. Moreover, 
research usually is to be able to make generalizations or 
predictions about events beyond your reach. Additionally, 
sampling is an important concept to consider with the big 
picture of understanding statistics. 

Imagine that we wanted to see if statistics anxiety was related 
to procrastination. We could measure everyone’s levels of 
statistics anxiety and procrastination and observe how strongly 
they were related to each other. This would, however, be 
prohibitively expensive. A more convenient way is to select a 
number of individuals randomly from the population and find 
the relationship between their statistics anxiety and 
procrastination levels. We could then generalize the findings 
from this sample to the population. We use statistics, more 
specifically inferential statistics, to help us generalize from a 
particular sample to the whole population. Understanding the 
relationship between populations and their samples is the first 
vital concept to grasp in this course. Remember that the 
research started with a general question about the population 
but to answer the question, a researcher studies a sample and 
then generalizes the results from the sample to the population. 

As we move into further concepts in statistics, we will see 
that how you get your participants (sampling) and sample size 
are important.  The general rule is to get a large enough 
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sample size and have the sample be a good representation of 
your population. 

Representative Sample 

Because we are using samples to generalize to the larger 
population it is important, vital, that the samples look like the 
population they came from. When the sample closely matches 
the population from which it was selected we call this a 
representative sample. An unrepresentative (biased) sample
is a subset of the population that does not have the 
characteristics typical of the target population. 

Random Sampling 

Usually, the ideal method of picking out a sample to study 
is called random selection or sampling. The researcher starts 
with a complete list of the population and randomly selects 
some of them to study. . Random sampling is considered a 
fair way of selecting a sample from a given population since 
every member is given equal opportunities of being selected. 
This process also helps to ensure that the sample selected is 
more likely to be representative of the larger population. 
Theoretically, the only thing that can compromise its 
representativeness is luck. If the sample is not representative of 
the population, the random variation is called sampling error. 

Example #1: You have been hired by the National 
Election Commission to examine how the American 
people feel about the fairness of the voting procedures 
in the U.S. Who will you ask? 

It is not practical to ask every single American how he or she 
feels about the fairness of the voting procedures. Instead, we 
query a relatively small number of Americans, and draw 
inferences about the entire country from their responses. The 
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Americans actually queried constitute our sample of the larger 
population of all Americans. 
A sample is typically a small subset of the population. In the 
case of voting attitudes, we would sample a few thousand 
Americans drawn from the hundreds of millions that make up 
the country. In choosing a sample, it is therefore crucial that it 
not over-represent one kind of citizen at the expense of others. 
For example, something would be wrong with our sample if it 
happened to be made up entirely of Florida residents. If the 
sample held only Floridians, it could not be used to infer the 
attitudes of other Americans. The same problem would arise if 
the sample were comprised only of Republicans. Inferences 
from statistics are based on the assumption that sampling is 
representative of the population. If the sample is not 
representative, then the possibility of sampling bias occurs. 
Sampling bias means that our conclusions apply only to our 
sample and are not generalizable to the full population. 

Example #2: We are interested in examining how many 
math classes have been taken on average by current 
graduating seniors at American colleges and 
universities during their four years in school. 

Whereas our population in the last example included all US 
citizens, now it involves just the graduating seniors 
throughout the country. This is still a large set since there are 
thousands of colleges and universities, each enrolling many 
students. (New York University, for example, enrolls 48,000 
students.) It would be prohibitively costly to examine the 
transcript of every college senior. We therefore take a sample 
of college seniors and then make inferences to the entire 
population based on what we find. To make the sample, we 
might first choose some public and private colleges and 
universities across the United States. Then we might sample 
50 students from each of these institutions. Suppose that the 
average number of math classes taken by the people in our 
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sample were 3.2. Then we might speculate that 3.2 
approximates the number we would find if we had the 
resources to examine every senior in the entire population. But 
we must be careful about the possibility that our sample is 
non-representative of the population. Perhaps we chose an 
overabundance of math majors, or chose too many technical 
institutions that have heavy math requirements. Such bad 
sampling makes our sample unrepresentative of the 
population of all seniors. 
To solidify your understanding of sampling bias, consider the 
following example. Try to identify the population and the 
sample, and then reflect on whether the sample is likely to 
yield the information desired. 

Example #3: A substitute teacher wants to know how 
students in the class did on their last test. The teacher 
asks the 10 students sitting in the front row to state 
their latest test score. He concludes from their report 
that the class did extremely well. What is the sample? 
What is the population? Can you identify any problems 
with choosing the sample in the way that the teacher 
did? 

In Example #3, the population consists of all students in the 
class. The sample is made up of just the 10 students sitting in 
the front row. The sample is not likely to be representative of 
the population. Those who sit in the front row tend to be more 
interested in the class and tend to perform higher on tests. 
Hence, the sample may perform at a higher level than the 
population. 

Example #4: A coach is interested in how many 
cartwheels the average college freshmen at his 
university can do. Eight volunteers from the freshman 
class step forward. After observing their performance, 
the coach concludes that college freshmen can do an 
average of 16 cartwheels in a row without stopping. 

In Example #4, the population is the class of all freshmen at 
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the coach’s university. The sample is composed of the 8 
volunteers. The sample is poorly chosen because volunteers 
are more likely to be able to do cartwheels than the average 
freshman; people who can’t do cartwheels probably did not 
volunteer! In the example, we are also not told of the gender of 
the volunteers. Were they all women, for example? That might 
affect the outcome, contributing to the non-representative 
nature of the sample (if the school is co-ed). 

Simple Random Sampling 

Researchers adopt a variety of sampling strategies. The most 
straightforward is simple random sampling. Such sampling 
requires every member of the population to have an equal 
chance of being selected into the sample. In addition, the 
selection of one member must be independent of the 
selection of every other member. That is, picking one member 
from the population must not increase or decrease the 
probability of picking any other member (relative to the others). 
In this sense, we can say that simple random sampling chooses 
a sample by pure chance. To check your understanding of 
simple random sampling, consider the following example. 
What is the population? What is the sample? Was the sample 
picked by simple random sampling? Is it biased? 

Example #5: A research scientist is interested in 
studying the experiences of twins raised together 
versus those raised apart. She obtains a list of twins 
from the National Twin Registry, and selects two 
subsets of individuals for her study. First, she chooses all 
those in the registry whose last name begins with Z. 
Then she turns to all those whose last name begins 
with B. Because there are so many names that start 
with B, however, our researcher decides to incorporate 
only every other name into her sample. Finally, she 
mails out a survey and compares characteristics of 
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twins raised apart versus together. 
In Example #5, the population consists of all twins recorded in 
the National Twin Registry. It is important that the researcher 
only make statistical generalizations to the twins on this list, 
not to all twins in the nation or world. That is, the National 
Twin Registry may not be representative of all twins. Even if 
inferences are limited to the Registry, a number of problems 
affect the sampling procedure we described. For instance, 
choosing only twins whose last names begin with Z does not 
give every individual an equal chance of being selected into 
the sample. Moreover, such a procedure risks over-
representing ethnic groups with many surnames that begin 
with Z. There are other reasons why choosing just the Z’s may 
bias the sample. 

Perhaps such people are more patient than average because 
they often find themselves at the end of the line! The same 
problem occurs with choosing twins whose last name begins 
with B. An additional problem for the B’s is that the “every-
other-one” procedure disallowed adjacent names on the B part 
of the list from being both selected. Just this defect alone 
means the sample was not formed through simple random 
sampling. 

Sample size matters 

Recall that the definition of a random sample is a sample in 
which every member of the population has an equal chance 
of being selected. This means that the sampling procedure 
rather than the results of the procedure define what it means 
for a sample to be random. Random samples, especially if the 
sample size is small, are not necessarily representative of the 
entire population. For example, if a random sample of 20 
subjects were taken from a population with an equal number 
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of males and females, there would be a nontrivial probability 
(0.06) that 70% or more of the sample would be female. Such 
a sample would not be representative, although it would be 
drawn randomly. Only a large sample size makes it likely that 
our sample is close to representative of the population. For this 
reason, inferential statistics take into account the sample size 
when generalizing results from samples to populations. In later 
chapters, you’ll see what kinds of mathematical techniques 
ensure this sensitivity to sample size. 

More complex sampling 

Sometimes it is not feasible to build a sample using simple 
random sampling. To see the problem, consider the fact that 
both Dallas and Houston are competed to be hosts of the 2012 
Olympics. Imagine that you are hired to assess whether most 
Texans prefer Houston to Dallas as the host, or the reverse. 
Given the impracticality of obtaining the opinion of every single 
Texan, you must construct a sample of the Texas population. 
But now notice how difficult it would be to proceed by simple 
random sampling. For example, how will you contact those 
individuals who don’t vote and don’t have a phone? Even 
among people you find in the telephone book, how can you 
identify those who have just relocated to California (and had 
no reason to inform you of their move)? What do you do about 
the fact that since the beginning of the study, an additional 
4,212 people took up residence in the state of Texas? As you 
can see, it is sometimes very difficult to develop a truly random 
procedure. For this reason, other kinds of sampling techniques 
have been devised. We now discuss two of them. 

Stratified Sampling 

Since simple random sampling often does not ensure a 
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representative sample, a sampling method called stratified 
random sampling is sometimes used to make the sample 
more representative of the population. This method can be 
used if the population has a number of distinct “strata” or 
groups. In stratified sampling, you first identify members of 
your sample who belong to each group. Then you randomly 
sample from each of those subgroups in such a way that the 
sizes of the subgroups in the sample are proportional to their 
sizes in the population. 
Let’s take an example: Suppose you were interested in views of 
capital punishment at an urban university. You have the time 
and resources to interview 200 students. The student body is 
diverse with respect to age; many older people work during 
the day and enroll in night courses (average age is 39), while 
younger students generally enroll in day classes (average age 
of 19). It is possible that night students have different views 
about capital punishment than day students. If 70% of the 
students were day students, it makes sense to ensure that 70% 
of the sample consisted of day students. Thus, your sample of 
200 students would consist of 140 day students and 60 night 
students. The proportion of day students in the sample and in 
the population (the entire university) would be the same. 
Inferences to the entire population of students at the 
university would therefore be more secure. 

Convenience Sampling 

Unfortunately, it is often impractical or impossible to study a 
truly random sample. Much of the time, in fact, studies are 
conducted with whoever is willing or available to be a research 
participant – this is commonly referred to as convenience 
sampling. At best, as noted, a researcher tries to study a sample 
that is not systematically unrepresentative of the population 
in any known way. For example, suppose a study is about a 
process that is likely to differ for people of different age groups. 
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In this situation, the researcher may attempt to include people 
of all age groups in the study. Alternatively, the researcher 
would be careful to draw conclusions only about the age group 
studied. Remember that one of the goals of research is to make 
conclusions about the population from the sample results. An 
unbiased random sample and a representative sample are 
important when drawing conclusions from the results of a 
study. 

“WEIRD” Culture Samples 

Psychologists have been guilty of largely recruiting samples of 
convenience from the thin slice of humanity—students—found 
at universities and colleges (Sears, 1986). This presents a 
problem when trying to assess the social mechanics of the 
public at large. Aside from being an overrepresentation of 
young, middle-class Caucasians, college students may also be 
more compliant and more susceptible to attitude change, have 
less stable personality traits and interpersonal relationships, 
and possess stronger cognitive skills than samples reflecting a 
wide range of age and experience (Peterson & Merunka, 2014; 
Visser, Krosnick, & Lavrakas, 2000). Put simply, these traditional 
samples (college students) may not be sufficiently 
representative of the broader population. Furthermore, 
considering that 96% of participants in psychology studies 
come from western, educated, industrialized, rich, and 
democratic countries (so-called WEIRD cultures; Henrich, 
Heine, & Norenzayan, 2010), and that the majority of these are 
also psychology students, the question of non-
representativeness becomes even more serious. Of course, 
when studying a basic cognitive process (like working memory 
capacity) or an aspect of social behavior that appears to be 
fairly universal (e.g., even cockroaches exhibit social facilitation), 
a non-representative sample may not be a big deal. Over time 
research has repeatedly demonstrated the important role that 
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individual differences (e.g., personality traits, cognitive abilities, 
etc.) and culture (e.g., individualism versus collectivism) play in 
shaping social behavior. For instance, even if we only consider a 
tiny sample of research on aggression, we know that narcissists 
are more likely to respond to criticism with aggression 
(Bushman &Baumeister, 1998); conservatives, who have a low 
tolerance for uncertainty, are more likely to prefer aggressive 
actions against those considered to be ‘outsiders’(de Zavala et 
al., 2010); countries, where men hold the bulk of the power 
in society, have higher rates of physical aggression directed 
against female partners (Archer, 2006); and males from the 
southern part of the United States are more likely to react with 
aggression following an insult (Cohen et al., 1996 ). 

Why does random sampling work? 

Below is an example showing how many credit hours students 
are currently enrolled in at a community college. This data 
represents the entire population of interest, all students 
currently enrolled in classes at Chandler-Gilbert Community 
College. Let’s say we randomly selected one student out of the 
population and asked them how many credit hours they are 
currently taking. How likely would it be for this one student to 
represent the entire population? This is the first line showing 
1 student reported taking 12 hours while the average credit 
hours for a CGCC student was 8 (population average). 
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Sampl
e size (n) 

 Sampl
e average 

Populati
on 
average 

 Difference 
between Sample & 
Population   

1 12 8 4 

2 15 8 7 

5 9.8 8 1.8 

25 9.5 8 1.5 

250 8.3 8 0.3 

2500 7.9 8 0.1 

The larger the sample size, the more closely it 
represents the population. 

As we can see from this activity, the larger our sample is, the 
more accurately it will represent the population from which it 
was drawn. This brings up a very important rule in research 
design. The larger the sample size is, the more accurately the 
sample will represent the population from which it was drawn. 
Also, if you are comparing groups, consider that the more 
diverse, or variable, individuals in each group are, the larger 
the sample needs to be to detect real differences between 
groups.  We will further dive into the importance of sample 
sizes with inferential statistics, but for now, consider that the 
larger the sample, the more likely the researcher will represent 
the population. 

Type of Research Designs 

Research studies come in many forms, and, just like with the 
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different types of data we have, different types of studies tell us 
different things. The choice of research design is determined 
by the research question and the logistics involved. Though a 
complete understanding of different research designs is the 
subject for at least one full class, if not more, a basic 
understanding of the principles is useful here. There are three 
types of research designs we will discuss: non-experimental, 
quasi-experimental, and random experimental. 

Non-Experimental Designs 

Non-experimental research (sometimes called correlational 
research) involves observing things as they occur naturally and 
recording our observations as data. In observational studies, 
information is gathered from observing.  This could include 
self-report as well as interviews. 

Consider this example: A data scientist wants to know if 
there is a relation between how conscientious a person 
is and whether that person is a good employee. She 
hopes to use this information to predict the job 
performance of future employees by measuring their 
personality when they are still job applicants. She 
randomly samples volunteer employees from several 
different companies, measuring their 
conscientiousness and having their bosses rate their 
performance on the job. She analyzes this data to find a 
relation. Conscientiousness is a person-based variable 
that researcher must gather data from employees as 
they are in order to find a relation between her 
variables. 

This type of research design cannot establish causality, it can 
still be quite useful. If the relation between conscientiousness 
and job performance is consistent, then it doesn’t necessarily 
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matter is conscientiousness causes good performance or if 
they are both caused by something else – she can still measure 
conscientiousness to predict future performance. Additionally, 
these studies have the benefit of reflecting reality as it actually 
exists since we as researchers do not change anything. 

Experimental Designs 

If we want to know if a change in one variable causes a change 
in another variable, we must use a true experiment. A true 
experiment is an experimental design with random 
assignment.  In an experimental design a researcher assigns 
or manipulates, the group’s participants will be in. Further, 
each participant is randomly assigned to a group. If there is no 
random assignment, the experiment can not have cause-effect 
conclusions. 

Types of Variables in an Experiment 

When conducting research, experimenters often manipulate 
variables. For example, an experimenter might compare the 
effectiveness of four types of antidepressants. In this case, the 
variable is “type of antidepressant.” When a variable is 
manipulated by an experimenter, it is called an independent 
variable. The experiment seeks to determine the effect of the 
independent variable on relief from depression. In this 
example, relief from depression is called a dependent variable. 
In general, the independent variable is manipulated by the 
experimenter and its effects on the dependent variable are 
measured. 

To understand what this means, let’s look at an 
example: A clinical researcher wants to know if a newly 
developed drug is effective in treating the flu. Working 
with collaborators at several local hospitals, she 
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randomly samples 40 flu patients and randomly assigns 
each one to one of two conditions: Group A receives 
the new drug and Group B received a placebo. She 
measures the symptoms of all participants after 1 week 
to see if there is a difference in symptoms between the 
groups. 

In the example, the independent variable is the drug 
treatment; we manipulate it into 2 levels: new drug or placebo. 
Without the researcher administering the drug (i.e. 
manipulating the independent variable), there would be no 
difference between the groups. Each person, after being 
randomly sampled to be in the research, was then randomly 
assigned to one of the 2 groups. That is, random sampling and 
random assignment are not the same thing and cannot be 
used interchangeably. For research to be a true experiment, 
random assignment must be used. For research to be 
representative of the population, random sampling must be 
used. The use of both techniques helps ensure that there are 
no systematic differences between the groups, thus 
eliminating the potential for sampling bias. The dependent 
variable in the example is flu symptoms. Barring any other 
intervention, we would assume that people in both groups, on 
average, get better at roughly the same rate. Because there 
are no systematic differences between the 2 groups, if the 
researcher does find a difference in symptoms, she can 
confidently attribute it to the effectiveness of the new drug. 

Can you identify the independent and dependent variables? 

Example #1: Can blueberries slow down 

40  |  Chapter 2 Types of Data, How to Collect Them & More
Terminology



aging? A study indicates that antioxidants 
found in blueberries may slow down the 
process of aging. In this study, 19-month- old 
rats (equivalent to 60-year-old humans) were 
fed either their standard diet or a diet 
supplemented by either blueberry, 
strawberry, or spinach powder (randomly 
assigned). After eight weeks, the rats were 
given memory and motor skills tests. 
Although all supplemented rats showed 
improvement, those supplemented with 
blueberry powder showed the most notable 
improvement. 

• What is the independent variable? (dietary 
supplement: none, blueberry, strawberry, and 
spinach) 

• What are the dependent variables? (memory 
test and motor skills test) 

Example #2: Does beta-carotene protect 
against cancer? Beta-carotene 
supplements have been thought to protect 
against cancer. However, a study published 
in the Journal of the National Cancer 
Institute suggests this is false. The study was 
conducted with 39,000 women aged 45 and 
up. These women were randomly assigned 
to receive a beta-carotene supplement or a 
placebo, and their health was studied over 
their lifetime. Cancer rates for women taking 
the beta-carotene supplement did not differ 
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systematically from the cancer rates of 
those women taking the placebo. 

• What is the independent variable? 
(supplements: beta-carotene or placebo) 

• What is the dependent variable? (occurrence of 
cancer) 

Example #3: How bright is right? An 
automobile manufacturer wants to know 
how bright brake lights should be in order to 
minimize the time required for the driver of 
the following car to realize that the car in 
front is stopping and to hit the brakes. 

• What is the independent variable? (brightness 
of brake lights) 

• What is the dependent variable? (time to hit 
brakes) 

Levels of an Independent Variable 
In order to establish that one variable must cause 

a change in another variable and so a researcher will 
likely use two groups or levels in order to observe 
the changes and make comparisons. 

• Experimental (treatment) group is the group who are 
exposed to the independent variable (or the manipulation) 
by the researcher; the experimental group represents the 
treatment group. 

• Control group is the group who are not exposed to the 
treatment variable; the control group serves as the 
comparison group. 
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If an experiment compares an experimental treatment group 
with a control group, then the independent variable (type of 
treatment) has two levels: experimental and control. Further, 
if an experiment were comparing five types of diets, then the 
independent variable (type of diet) would have 5 levels. In 
general, the number of levels of an independent variable is the 
number of experimental conditions.  Another term for levels for 
the independent variable is groups, treatments, or conditions. 

Scores from the experimental group are compared to scores 
in the control group and if there is a systematic difference 
between groups then there is evidence of a relationship 
between variables. Let’s use our earlier example of stress as a 
way to illustrate the experimental method. Let’s assume that a 
researcher examining stress wants to test the impact of a stress 
reduction program on the stress levels of students and recruits 
100 students to participate. Students are randomly assigned 
to either the experimental group or the control group. The 
experimental group participates in the stress reduction 
program but the control group does not. The stress-reduction 
program is the independent variable and stress level is the 
dependent variable. At the end of the training program each 
group, the experimental group, and the control group 
complete a stress test, and the scores are compared. If the 
stress reduction program worked, then the stress levels for the 
experimental group should be lower than the stress levels for 
the control group. 

Quasi-Experimental Designs 

Quasi-experimental research involves getting as close as 
possible to the conditions of a true experiment when we 
cannot meet all requirements. Specifically, a quasi- 
experiment involves manipulating the independent variable 
but not randomly assigning people to groups. There are several 
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reasons this might be used. First, it may be unethical to deny 
potential treatment to someone if there is good reason to 
believe it will be effective and that the person would unduly 
suffer if they did not receive it. Alternatively, it may be 
impossible to randomly assign people to groups. 

Consider the following example: A professor wants to 
test out a new teaching method to see if it improves 
student learning. Because he is teaching two sections 
of the same course, he decides to teach one section 
the traditional way and the other section using the new 
method. At the end of the semester, he compares the 
grades on the final for each class to see if there is a 
difference. 

In this example, the professor has manipulated his teaching 
method, which is the independent variable, hoping to find a 
difference in student performance, the dependent variable. 
However, because students enroll in courses, he cannot 
randomly assign the students to a particular group, thus 
precluding using a true experiment to answer his research 
question. Because of this, we cannot know for sure that there 
are no systematic differences between the classes other than 
teaching style and therefore cannot determine causality. 

Extraneous and Confounding Variables 
Sometimes in a research study things happen that make 

it difficult for a researcher to determine whether the 
independent variable caused the change in the dependent 
variable. These have special names. 

• An extraneous variable is something that occurs in the 
environment or happens to the participants that 
unintentionally (accidentally) influences the outcome of 
the study. An extraneous variable affects everyone in a 
study.In an experiment on the effect of expressive writing 
on health, for example, extraneous variables would include 
participant variables (individual differences) such as their 
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writing ability, their diet, and their shoe size. They would 
also include situation or task variables such as the time of 
day when participants write, whether they write by hand 
or on a computer, and the weather. Extraneous variables 
pose a problem because many of them are likely to have 
some effect on the dependent variable. For example, 
participants’ health will be affected by many things other 
than whether or not they engage in expressive writing. 
This can make it difficult to separate the effect of the 
independent variable from the effects of the extraneous 
variables, which is why it is important to control 
extraneous variables by holding them constant. 

• A confounding variable is a type of extraneous variable 
that changes at the same time as the independent 
variable, making it difficult to discern which one is causing 
changes in the dependent variable. 

Working with data 

What are data? 

The first important point about data is that data are – meaning 
that the word “data” is plural (though some people disagree 
with me on this). You might also wonder how to pronounce 
“data” – I say “day-tah”, but I know many people who say “dah-
tah”, and I have been able to remain friends with them in spite 
of this. Now, if I heard them say “the data is” then that would be 
a bigger issue… 
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Operationalizing Variables 

We need to have specifically defined how we are measuring 
our construct or our variable.  The act of defining how to 
measure your data is to operationalize.  Some variables are 
easier to define, like height or weight.  I can measure height 
in inches tall or weight in pounds.  Some other variables can 
be more open to measurement, like happiness or love.  How 
would I measure happiness?  Would I simply ask are you happy 
(yes or no)? Would I use a questionnaire for a self-report 
measure?  Would I rate individuals from observing them for 
happiness?  Would I ask their partner, teacher, parent, best 
friend about the person’s happiness? Researchers’ decisions 
on how to measure data is an important factor and helps to 
determine what kind of data is being used. 

How would you measure happiness in a research 
study? Image Source 

Qualitative and Quantitative Variables 

Data are composed of variables, where a variable reflects a 
unique measurement or quantity. An important distinction 
between variables is between qualitative variables and 
quantitative variables. Qualitative variables are those that 
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express a qualitative attribute such as hair color, eye color, 
religion, favorite movie, gender, and so on. Qualitative 
means that they describe a quality rather than a numeric 
quantity. Qualitative variables are sometimes referred to as 
categorical variables. For qualitative variables, response 
options are usually limited or fixed to a set of possible values. 
Assigning a person, animal or event to a category is done on 
the basis of some qualitative property. For example, in my stats 
course, I generally give an introductory survey, both to obtain 
data to use in class and to learn more about the students. One 
of the questions that I ask is “What is your favorite food?”, to 
which some of the answers have been: blueberries, chocolate, 
tamales, pasta, pizza, and mango. Those data are not 
intrinsically numerical; we could assign numbers to each one 
(1=blueberries, 2=chocolate, etc), but we would just be using the 
numbers as labels rather than as real numbers. 

Personality type, gender, and shirt sizes are all categorical, 
or qualitative, variables. The values of a qualitative variable do 
not necessarily imply order and do not produce numerical 
responses or use real numbers.  For example, there is an order 
to shirt size but shirt size is categorical and not number based. 
Another example is postal Zip Code data. Those numbers are 
represented as integers, but they don’t actually refer to a 
numeric scale; each zip code basically serves as a label or 
category representing a different region.  Because this data is 
not using real numbers, what we do with those numbers is 
constrained; for example, it wouldn’t make sense to compute 
the average of those numbers. 

More commonly in statistics we will work with quantitative 
data, meaning data that are numerical. For example, here Table 
1 shows the results from another question that I ask in my 
introductory class, which is “Why are you taking this class?” 
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Table 1: Counts of the prevalence of different responses to the question “Wh

Why are you taking this class? 

It fulfills a degree plan requirement 

It fulfills a General Education Breadth Requirement 

It is not required but I am interested in the topic 

Other 

Note that the students’ answers were qualitative, but we 
generated a quantitative summary of them by counting how 
many students gave each response. Quantitative variables are 
those variables that are measured in terms of numbers. Some 
examples of quantitative variables are height, weight, and shoe 
size. 

Experimental studies can involve qualitative and quantitative 
data. In the study on the effect of diet discussed previously, 
the independent variable was type of supplement: none, 
strawberry, blueberry, and spinach. The variable “type of 
supplement” is a qualitative variable; there is nothing 
quantitative about it. In contrast, the dependent variable 
“memory test” is a quantitative variable since memory 
performance was measured on a quantitative scale (number 
correct). 

Discrete and Continuous Variables 

Variables such as number of children in a household are called 
discrete variables since the possible scores are discrete points 
on the scale. For example, a household could have three 
children or six children, but not 4.53 children. Other variables 
such as “time to respond to a question” are continuous 
variables since the scale is continuous and not made up of 
discrete steps. The response time could be 1.64 seconds, or it 
could be 1.64237123922121 seconds. Of course, the practicalities 
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of measurement preclude most measured variables from 
being truly continuous. 

Levels of Measurement 

Numbers mean different things in different situations. 
Consider three answers below that appear to be the same, but 
they really are not. All three questions pertain to a running race 
that you just finished. The three 5s all look the same. However, 
the three variables (identification number, finish place, and 
time) are quite different. Because of these different variables, 
the way we interpret 5 is unique for each variable. 

• What number were you wearing in the race? 5 
• What place did you finish in? 5 
• How many minutes did it take you to finish the race? 

To illustrate the difference, consider your friend who also ran 
the race. Their answers to the same three questions were 10, 10, 
and 10. If we take the first question by itself and know that you 
had a score of 5, and your friend had a score of 10, what can 
we conclude? We can conclude that your race identification 
number is different from your friend’s number. That is all we 
can conclude. On the second question, with scores of 5 and 10, 
what can we conclude regarding the place you and your friend 
finished in the race? We can state that you were faster than 
your friend in the race and, of course, that your finishing places 
are different. Comparing the 5 and 10 on the third question, 
what can we conclude? We could state that you ran the race 
twice as fast as your friend, you ran the race faster than your 
friend and that your time was different than your friend’s time. 
The point of this discussion is to demonstrate the relationship 
between the questions we ask, and what the answers to 
those questions can tell us . Chances are, much of your past 

Chapter 2 Types of Data, How to Collect Them & More
Terminology  |  49



experience with numbers has been with pure numbers or with 
measurements such as time, length, and amount. “Four is 
twice as much as two” is true for the pure numbers themselves 
and for time, length, and amount –but this statement would 
not be true for finish places in a race. Fourth place is not twice 
anything in relation to 2nd place. Fourth place is not twice as 
slow or twice as far behind the 2nd place runner. The types of 
descriptive and inferential statistics we can use depend on the 
type of variable measured. Remember, a variable is defined as a 
characteristic we can measure that can assume more than one 
value. 

For statistical analysis, exactly how the measurement is carried 
out depends on the type of variable involved in the analysis. 
Different types are measured differently. To measure the time 
taken to respond to a stimulus, you might use a stopwatch. 
Stopwatches are of no use, of course, when it comes to 
measuring someone’s attitude towards a political candidate. A 
rating scale is more appropriate in this case (with labels like 
“very favorable,” “somewhat favorable,” etc.). For a dependent 
variable such as “favorite color,” you can simply note the color-
word (like “red”) that the subject offers. 
Although procedures for measurement differ in many ways, 
they can be classified using a few fundamental categories. The 
psychologist S. S. Stevens suggested that scores can be 
assigned to individuals so that they communicate more or less 
quantitative information about the variable of interest 
(Stevens, 1946). Stevens actually suggested four different levels 
of measurement(which he called “scales of measurement”) 
that correspond to four different levels of 
quantitative information that can be communicated by a set 
of scores. In a given category, all of the procedures share some 
properties that are important for you to know about. The 
categories are called “scale types,” or just “scales,” and are 
described in this section. 
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Nominal scales 
When measuring using a nominal scale, one simply names 

or categorizes responses. Gender, handedness, favorite color, 
and religion are examples of variables measured on a nominal 
scale. The essential point about nominal scales is that they do 
not imply any ordering among the responses. For example, 
when classifying people according to their favorite color, there 
is no sense in which green is placed “ahead of” blue. Responses 
are merely categorized. Nominal scales embody the lowest 
level of measurement. 

Ordinal scales 

A researcher wishing to measure consumers’ 
satisfaction with their microwave ovens might ask 
them to specify their feelings as either “very 
dissatisfied,” “somewhat dissatisfied,” “somewhat 
satisfied,” or “very satisfied.” The items in this scale 
are ordered, ranging from least to most satisfied. 
This is what distinguishes ordinal from nominal 
scales. Unlike nominal scales, ordinal scales allow 
comparisons of the degree to which two subjects 
possess the dependent variable. For example, our 
satisfaction ordering makes it meaningful to assert 
that one person is more satisfied than another with 
their microwave ovens. Such an assertion reflects 
the first person’s use of a verbal label that comes 
later in the list than the label chosen by the second 
person. 

On the other hand, ordinal scales fail to capture 
important information that will be present in the 
other scales we examine. In particular, the 
difference between two levels of an ordinal scale 
cannot be assumed to be the same as the difference 
between two other levels. In our satisfaction scale, 
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for example, the difference between the responses 
“very dissatisfied” and “somewhat dissatisfied” is 
probably not equivalent to the difference between 
“somewhat dissatisfied” and “somewhat satisfied.” 
Nothing in our measurement procedure allows us to 
determine whether the two differences reflect the 
same difference in psychological satisfaction. 

Statisticians express this point by saying that 
the differences between adjacent scale values 
do not necessarily represent equal intervals on 
the underlying scale giving rise to the 
measurements. (In our case, the underlying 
scale is the true feeling of satisfaction, which we 
are trying to measure.) 

What if the researcher had measured satisfaction 
by asking consumers to indicate their level of 
satisfaction by choosing a number from one to 
four? Would the difference between the responses 
of one and two necessarily reflect the same 
difference in satisfaction as the difference between 
the responses two and three? The answer is No. 
Changing the response format to numbers does not 
change the meaning of the scale. We still are in no 
position to assert that the mental step from 1 to 2 
(for example) is the same as the mental step from 3 
to 4. 

(Equal) Interval scales 

Interval scales are numerical scales in which 
intervals have the same interpretation throughout. 
As an example, consider the Fahrenheit scale of 
temperature. The difference between 30 degrees 
and 40 degrees represents the same temperature 
difference as the difference between 80 degrees and 
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90 degrees. This is because each 10-degree interval 
has the same physical meaning (in terms of the 
kinetic energy of molecules). 

Interval scales are not perfect, however. In 
particular, they do not have a true zero point even if 
one of the scaled values happens to carry the name 
“zero.” The Fahrenheit scale illustrates the issue. Zero 
degrees Fahrenheit does not represent the complete 
absence of temperature (the absence of any 
molecular kinetic energy). In reality, the label “zero” 
is applied to its temperature for quite accidental 
reasons connected to the history of temperature 
measurement. Since an interval scale has no true 
zero point, it does not make sense to compute ratios 
of temperatures. For example, there is no sense in 
which the ratio of 40 to 20 degrees Fahrenheit is the 
same as the ratio of 100 to 50 degrees; no interesting 
physical property is preserved across the two ratios. 
After all, if the “zero” label were applied at the 
temperature that Fahrenheit happens to label as 10 
degrees, the two ratios would instead be 30 to 10 
and 90 to 40, no longer the same! For this reason, it 
does not make sense to say that 80 degrees is “twice 
as hot” as 40 degrees. Such a claim would depend 
on an arbitrary decision about where to “start” the 
temperature scale, namely, what temperature to call 
zero (whereas the claim is intended to make a more 
fundamental assertion about the underlying physical 
reality). 

Ratio scales (Absolute zero) 

The ratio scale of measurement is the most 
informative scale. It is an interval scale with the 
additional property that its zero position indicates 
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the absence of the quantity being measured. You 
can think of a ratio scale as the three earlier scales 
rolled up in one. Like a nominal scale, it provides 
a name or category for each object (the numbers 
serve as labels). Like an ordinal scale, the objects are 
ordered (in terms of the ordering of the numbers). 
Like an interval scale, the same difference at two 
places on the scale has the same meaning. And in 
addition, the same ratio at two places on the scale 
also carries the same meaning. 

The Fahrenheit scale for temperature has an 
arbitrary zero point and is therefore not a ratio scale. 
However, zero on the Kelvin scale is absolute zero. 
This makes the Kelvin scale a ratio scale. For 
example, if one temperature is twice as high as 
another as measured on the Kelvin scale, then it has 
twice the kinetic energy of the other temperature. 

Another example of a ratio scale is the amount of 
money you have in your pocket right now (25 cents, 
55 cents, etc.). Money is measured on a ratio scale 
because, in addition to having the properties of an 
interval scale, it has a true zero point: if you have zero 
money, this implies the absence of money. Since 
money has a true zero point, it makes sense to say 
that someone with 50 cents has twice as much 
money as someone with 25 cents (or that Bill Gates 
has a million times more money than you do). 

Digging deeper: What about the number value? 
It is important to know what number values 
mean.  Is the number meaningful or it is a 
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category? This section briefly reviews how 
numbers can be categorized according to 
meaning. 

Binary numbers. The simplest are binary numbers 
– that is, zero or one. We will often use binary 
numbers to represent whether something is true or 
false, or present or absent. For example, I might ask 
10 people if they have ever experienced a migraine 
headache, recording their answers as “Yes” or “No”. 
It’s often useful to instead use logical values, which 
take the value of either TRUE or FALSE. This can be 

especially useful for programming languages to 
analyze data, since these languages already 
understand the concepts of TRUE and FALSE. In 
fact, most programming languages treat truth 
values and binary numbers equivalently. The 
number 1 is equal to the logical value TRUE, and the 

number zero is equal to the logical value FALSE. 

Integers. Integers are whole numbers with no 
fractional or decimal part. We most commonly 
encounter integers when we count things, but they 
also often occur in psychological measurement. For 
example, in my introductory survey I administer a 
set of questions about attitudes towards statistics 
(such as “Statistics seems very mysterious to me.”), 
on which the students respond with a number 
between 1 (“Disagree strongly”) and 7 (“Agree 
strongly”). Integers are discontinuous. 

Real numbers. Most commonly in statistics we 
work with real numbers, which have a fractional/
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decimal part. For example, we might measure 
someone’s weight, which can be measured to an 
arbitrary level of precision, from kilograms down to 
micrograms. Real numbers can be discontinuous or 
continuous. 

What level of measurement is used for 
psychological variables? 

Rating scales are used frequently in psychological research. 
For example, experimental subjects may be asked to rate their 
level of pain, how much they like a consumer product, their 
attitudes about capital punishment, their confidence in an 
answer to a test question. Typically these ratings are made on a 
5-point or a 7-point scale. These scales are ordinal scales since 
there is no assurance that a given difference represents the 
same thing across the range of the scale. For example, there 
is no way to be sure that a treatment that reduces pain from 
a rated pain level of 3 to a rated pain level of 2 represents the 
same level of relief as a treatment that reduces pain from a 
rated pain level of 7 to a rated pain level of 6. 

In memory experiments, the dependent variable is often the 
number of items correctly recalled. What scale of 
measurement is this? You could reasonably argue that it is 
a ratio scale. First, there is a true zero point; some subjects 
may get no items correct at all. Moreover, a difference of one 
represents a difference of one item recalled across the entire 
scale. It is certainly valid to say that someone who recalled 12 
items recalled twice as many items as someone who recalled 
only 6 items. 

But number-of-items recalled is a more complicated case 
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than it appears at first. Consider the following example in 
which subjects are asked to remember as many items as 
possible from a list of 10. Assume that (a) there are 5 easy items 
and 5 difficult items, (b) half of the subjects are able to recall all 
the easy items and different numbers of difficult items, while 
(c) the other half of the subjects are unable to recall any of the 
difficult items but they do remember different numbers of easy 
items. Some sample data are shown below. 

Subject Easy 
Items 

Difficult 
Items Score 

A 0 0 1 1 0 0 0 0 0 0 2 

B 1 0 1 1 0 0 0 0 0 0 3 

C 1 1 1 1 1 1 1 0 0 0 7 

D 1 1 1 1 1 0 1 1 0 1 8 

Let’s compare (i) the difference between Subject A’s score of 
2 and Subject B’s score of 3 and (ii) the difference between 
Subject C’s score of 7 and Subject D’s score of 8. The former 
difference is a difference of one easy item; the latter difference 
is a difference of one difficult item. Do these two differences 
necessarily signify the same difference in memory? We are 
inclined to respond “No” to this question since only a little more 
memory may be needed to retain the additional easy item 
whereas a lot more memory may be needed to retain the 
additional hard item. The general point is that it is often 
inappropriate to consider psychological measurement scales 
as either interval or ratio. You will often see in statistical 
software that the distinction is between nominal, ordinal, and 
interval/ratio. 
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Consequences of level of measurement 

Why are we so interested in the type of scale that measures a 
dependent variable? The crux of the matter is the relationship 
between the variable’s level of measurement and the statistics 
that can be meaningfully computed with that variable. For 
example, consider a hypothetical study in which 5 children are 
asked to choose their favorite color from blue, red, yellow, 
green, and purple. The researcher codes the results as follows: 

Color Code 

                    Blue 1 

                    Red 2 

Yellow 3 

Green 4 

Purple 5 

This means that if a child said her favorite color was “Red,” then 
the choice was coded as “2,” if the child said her favorite color 
was “Purple,” then the response was coded as 5, and so forth. 
Consider the following hypothetical data: 

Subject Color Code 

1 Blue 1 

2 Blue 1 

3 Green 4 

4 Green 4 

5 Purple 5 
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Each code is a number, so nothing prevents us from 
computing the average code assigned to the children. The 
average happens to be 3, but you can see that it would be 
senseless to conclude that the average favorite color is yellow 
(the color with a code of 3). Such nonsense arises because 
favorite color is a nominal scale, and taking the average of its 
numerical labels is like counting the number of letters in the 
name of a snake to see how long the beast is. 

Does it make sense to compute the mean of numbers 
measured on an ordinal scale? This is a difficult question, one 
that statisticians have debated for decades. The prevailing (but 
by no means unanimous) opinion of statisticians is that for 
almost all practical situations, the mean of an ordinally-
measured variable is a meaningful statistic. However, there are 
extreme situations in which computing the mean of an 
ordinally-measured variable can be very misleading. 

What makes a good measurement? 

In many fields such as psychology, the thing that we are 
measuring is not a physical feature, but instead is an 
unobservable theoretical concept, which we usually refer to as 
a construct. For example, let’s say that I want to test how well 
you understand the distinction between the different types of 
numbers described above. I could give you a pop quiz that 
would ask you several questions about these concepts and 
count how many you got right. This test might or might not 
be a good measurement of the construct of your actual 
knowledge – for example, if I were to write the test in a 
confusing way or use language that you don’t understand, 
then the test might suggest you don’t understand the 
concepts when really you do. On the other hand, if I give a 
multiple-choice test with very obvious wrong answers, then 

Chapter 2 Types of Data, How to Collect Them & More
Terminology  |  59



you might be able to perform well on the test even if you don’t 
actually understand the material. 

It is usually impossible to measure a construct without some 
amount of error. In the example above, you might know the 
answer, but you might misread the question and get it wrong. 
In other cases, there is error intrinsic to the thing being 
measured, such as when we measure how long it takes a 
person to respond on a simple reaction time test, which will 
vary from trial to trial for many reasons. We generally want 
our measurement error to be as low as possible, which we can 
acheive either by improving the quality of the measurement 
(for example, using a better time to measure reaction time), 
or by averaging over a larger number of individual 
measurements. 

Sometimes there is a standard against which other 
measurements can be tested, which we might refer to as a 
“gold standard” – for example, measurement of sleep can be 
done using many different devices (such as devices that 
measure movement in bed), but they are generally considered 
inferior to the gold standard of polysomnography (which uses 
measurement of brain waves to quantify the amount of time a 
person spends in each stage of sleep). Often the gold standard 
is more difficult or expensive to perform, and the cheaper 
method is used even though it might have greater error. 

When we think about what makes a good measurement, 
we usually distinguish two different aspects of a good 
measurement: it should be reliable, and it should be valid. 

Reliability 

Reliability refers to the consistency of our measurements. One 
common form of reliability, known as “test-retest reliability”, 
measures how well the measurements agree if the same 
measurement is performed twice. For example, I might give 
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you a questionnaire about your attitude towards statistics 
today, repeat this same questionnaire tomorrow, and compare 
your answers on the two days; we would hope that they would 
be very similar to one another, unless something happened in 
between the two tests that should have changed your view of 
statistics (like reading this book!). 

Another way to assess reliability comes in cases where the 
data include subjective judgments. For example, let’s say that 
a researcher wants to determine whether a treatment changes 
how well an autistic child interacts with other children, which 
is measured by having experts watch the child and rate their 
interactions with the other children. In this case we would like 
to make sure that the answers don’t depend on the individual 
rater — that is, we would like for there to be high inter-rater 
reliability. This can be assessed by having more than one rater 
perform the rating, and then comparing their ratings to make 
sure that they agree well with one another. 

Reliability is important if we want to compare one 
measurement to another, because the relationship between 
two different variables can’t be any stronger than the 
relationship between either of the variables and itself (i.e., its 
reliability). This means that an unreliable measure can never 
have a strong statistical relationship with any other measure. 
For this reason, researchers developing a new measurement 
(such as a new survey) will often go to great lengths to establish 
and improve its reliability. 
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Figure 1: A figure demonstrating the distinction between 
reliability and validity, using shots at a bullseye. Reliability refers 
to the consistency of location of shots, and validity refers to the 
accuracy of the shots with respect to the center of the bullseye. 

Validity 

Reliability is important, but on its own it’s not enough: After all, I 
could create a perfectly reliable measurement on a personality 
test by re-coding every answer using the same number, 
regardless of how the person actually answers. We want our 
measurements to also be valid — that is, we want to make sure 
that we are actually measuring the construct that we think 
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we are measuring (Figure 1). There are many different types of 
validity that are commonly discussed; we will focus on three of 
them. 

Face validity. Does the measurement make sense on its face? 
If I were to tell you that I was going to measure a person’s blood 
pressure by looking at the color of their tongue, you would 
probably think that this was not a valid measure on its face. On 
the other hand, using a blood pressure cuff would have face 
validity. This is usually a first reality check before we dive into 
more complicated aspects of validity. 

Construct validity. Is the measurement related to other 
measurements in an appropriate way? This is often subdivided 
into two aspects. Convergent validity means that the 
measurement should be closely related to other measures that 
are thought to reflect the same construct. Let’s say that I am 
interested in measuring how extroverted a person is using 
either a questionnaire or an interview. Convergent validity 
would be demonstrated if both of these different 
measurements are closely related to one another. On the other 
hand, measurements thought to reflect different constructs 
should be unrelated, known as divergent validity. If my theory 
of personality says that extraversion and conscientiousness are 
two distinct constructs, then I should also see that my 
measurements of extraversion are unrelated to measurements 
of conscientiousness. 

Predictive validity. If our measurements are truly valid, then 
they should also be predictive of other outcomes. For example, 
let’s say that we think that the psychological trait of sensation 
seeking (the desire for new experiences) is related to risk taking 
in the real world. To test for predictive validity of a 
measurement of sensation seeking, we would test how well 
scores on the test predict scores on a different survey that 
measures real-world risk taking. 
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Critical Evaluation of Statistical Results 

We need to evaluate the statistical studies we read about 
critically and analyze them before accepting the results of the 
studies. Common problems to be aware of include: 

• Problems with samples: A sample must be representative 
of the population. A sample that is not representative of 
the population is biased. Biased samples that are not 
representative of the population give results that are 
inaccurate and not valid. 

• Self-selected samples: Responses only by people who 
choose to respond, such as call-in surveys, are often 
unreliable. 

• Sample size issues: Samples that are too small may be 
unreliable. Larger samples are better, if possible. In some 
situations, having small samples is unavoidable and can 
still be used to draw conclusions. Examples: crash testing 
cars or medical testing for rare conditions. 

• Undue influence: collecting data or asking questions in a 
way that influences the response 

• Non-response or refusal of a participant to participate: The 
collected responses may no longer be representative of 
the population. Often, people with strong positive or 
negative opinions may answer surveys, which can affect 
the results. 

• Causality: A relationship between two variables does not 
mean that one causes the other to occur. They may be 
related (correlated) because of their relationship through a 
different variable. 
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• Self-funded or self-interest studies: A study performed by a 
person or organization in order to support their claim. Is 
the study impartial? Read the study carefully to evaluate 
the 
 work. Do not automatically assume that the study is good, 
but do not automatically assume the study is bad either. 
Evaluate it on its merits and the work done. 

• Misleading use of data: improperly displayed graphs, 
incomplete data, or lack of context 

• Confounding: When the effects of multiple factors on a 
response cannot be separated. Confounding makes it 
difficult or impossible to draw valid conclusions about the 
effect of each factor. 

Types of Statistical Analyses 

Now that we understand the nature of our data, let’s turn to the 
types of statistics we can use to interpret them. As mentioned 
at the end of chapter 1, there are 2 types of statistics: descriptive 
and inferential. 

Descriptive Statistics 

Descriptive statistics are numbers that are used to summarize 
and describe data. The word “data” refers to the information 
that has been collected from an experiment, a survey, an 
historical record, etc. (By the way, “data” is plural. One piece 
of information is called a “datum.”) If we are analyzing birth 
certificates, for example, a descriptive statistic might be the 
percentage of certificates issued in New York State, or the 
average age of the mother. Any other number we choose to 
compute also counts as a descriptive statistic for the data from 
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which the statistic is computed. Several descriptive statistics 
are often used at one time to give a full picture of the data. 

Descriptive statistics are just descriptive. They do not involve 
generalizing beyond the data at hand. Generalizing from our 
data to another set of cases is the business of inferential 
statistics, which you’ll be studying in another section. Here we 
focus on (mere) descriptive statistics. 

Some descriptive statistics are shown in Table 2. The table 
shows the average salaries for various occupations in the 
United States in 1999. 

Salary 1999 Salary 2019 Occupation 

$112,760 $175,310 pediatricians 

$106,130 $155,600 dentists 

$100,090 $126,240 podiatrists 

$76,140 $97,152 physicists 

$53,410 $80,750 architects 

$49,720 $78,200 school, clinical, and counseling 
psychologists 

$47,910 $56,640 flight attendants 

$39,560 $59,670 elementary school teachers 

$38,710 $65,170 police officers 

$18,980 $28, 040 floral designers 

Table 2. Average salaries for various occupations in 1999 and 
2019 (median salaries reported by Bureau of Labor Statistics). 
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Descriptive statistics like these offer insight into American 
society. It is interesting to note, for example, that we pay the 
people who educate our children and who protect our citizens 
a great deal less than we pay people who take care of our feet 
or our teeth. 

For more descriptive statistics, consider Table 3. It shows the 
number of employed single young men to single young 
women for large metro areas in the US (reported in 2014). From 
this table we see that men outnumber women most in the 
San Jose, CA area, and women outnumber men most in the 
Memphis, TN area. You can see that descriptive statistics can 
be useful if we are looking for an opposite-sex partner between 
the ages of 25-34 years old! (These data come from Pew 
Research) 
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Highest Ratios of Employed Single 
Men to Single Women (25-34 y/o) Men per 100 Women Lowest Ratios of Emplo

Single Women (25-34 y

1. San-Jose-Sunnyvale-Santa Clara, 
CA 114 1. Memphis, TN-MS-AR 

2. Denver-Aurora-Lakewood, CO 101 2. Jacksonville, FL 

3. San Diego-Carlsbad, CA 99 3. Detroit-Warren-De

4. Minneapolis-St. 
Paul-Bloomington, MN-WI 98 4. Charlotte-Concord-

5. Seattle-Tacoma-Bellevue, WA 96 
5. Philadelphia-Cam
PA-NJ-DE-MD 

6. San Francisco-Oakland-Hayward, 
CA 93 6. Kansas City, MO-K

7. Washington-Arlington-Alexandra, 
DC-VA-MD-WV            92 

7. 
Nashville-Davidson-Murf
TN 

8. Los Angeles-Long 
Beach-Anaheim, CA 91 

8. Miami-Fort Lauder
Beach, FL 

9. Pittsburgh, PA 90 9. New Orleans-Metair

10. Orlando-Kissimmee-Sanford, FL 90 10. Cincinnati, OH-KY

Table 3. Number of employed, 25-34 year old ratio of 
men to women in large metro areas of the U.S. (Pew 
Research, 2014) 
These descriptive statistics may make us ponder why there 

are ratio differences in these large metropolitan areas. You 
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probably know that descriptive statistics are central to the 
world of sports. Every sporting event produces numerous 
statistics such as the shooting percentage of players on a 
basketball team. For the Olympic marathon (a foot race of 26.2 
miles), we possess data that cover more than a century of 
competition. (The first modern Olympics took place in 1896.) 
The following table shows the winning times for both men and 
women (the latter have only been allowed to compete since 
1984). 
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Women 

Year Winner Country Time 

1984 Joan Benoit USA 2:24:52 

1988 Rosa Mota POR 2:25:40 

1992 Valentina Yegorova UT 2:32:41 

1996 Fatuma Roba ETH 2:26:05 

2000 Naoko Takahashi JPN 2:23:14 

2004 Mizuki Noguchi JPN 2:26:20 

2008 Constantina Dita-Tomescu Romania 2:26:44 

2012 Tiki Gelana ETH 2:23:07 

2016 Jemima Sumgong Kenya 2:24:04 

2020 Peres Jepchirchir Kenya 2:27:20 

Men 

Year Winner Country Time 

1896 Spiridon Louis GRE 2:58:50 

1900 Michel Theato FRA 2:59:45 

1904 Thomas Hicks USA 3:28:53 

1906 Billy Sherring CAN 2:51:23 

1908 Johnny Hayes USA 2:55:18 

1912 Kenneth McArthur S. Afr. 2:36:54 

70  |  Chapter 2 Types of Data, How to Collect Them & More
Terminology



1920 Hannes Kolehmainen FIN 2:32:35 

1924 Albin Stenroos FIN 2:41:22 
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1928 Boughra El Ouafi FRA 2:32:57 

1932 Juan Carlos Zabala ARG 2:31:36 

1936 Sohn Kee-Chung JPN 2:29:19 

1948 Delfo Cabrera ARG 2:34:51 

1952 Emil Ztopek CZE 2:23:03 

1956 Alain Mimoun FRA 2:25:00 

1960 Abebe Bikila ETH 2:15:16 

1964 Abebe Bikila ETH 2:12:11 

1968 Mamo Wolde ETH 2:20:26 

1972 Frank Shorter USA 2:12:19 

1976 Waldemar Cierpinski E.Ger 2:09:55 

1980 Waldemar Cierpinski E.Ger 2:11:03 

1984 Carlos Lopes POR 2:09:21 

1988 Gelindo Bordin ITA 2:10:32 

1992 Hwang Young-Cho S. Kor 2:13:23 

1996 Josia Thugwane S. Afr. 2:12:36 

2000 Gezahenge Abera ETH 2:10.10 

2004 Stefano Baldini ITA 2:10:55 

2008 Samuel Wanjiru Kenya 2:06:32 

2012 Stephen Kiprotich Uganda 2:08:01 

72  |  Chapter 2 Types of Data, How to Collect Them & More
Terminology



2016 Eliud Kipchoge Kenya 2:08:44 

2020 Eliud Kipchoge Kenya 2:08:38 

Table 4. Winning Olympic marathon times. 
There are many descriptive statistics that we can compute 

from the data in the table. To gain insight into the 
improvement in speed over the years, let us divide the men’s 
times into two pieces, namely, the first 13 races (up to 1952) 
and the second 13 (starting from 1956). The mean winning time 
for the first 13 races is 2 hours, 44 minutes, and 22 seconds 
(written 2:44:22). The mean winning time for the second 13 
races is 2:13:18. This is quite a difference (over half an hour). 
Does this prove that the fastest men are running faster? Or is 
the difference just due to chance, no more than what often 
emerges from chance differences in performance from year to 
year? We can’t answer this question with descriptive statistics 
alone. All we can affirm is that the two means are “suggestive.” 

Examining Table 4 leads to many other questions. We note 
that Takahashi (the lead female runner in 2000) would have 
beaten the male runner in 1956 and all male runners in the 
first 12 marathons. This fact leads us to ask whether the gender 
gap will close or remain constant. When we look at the times 
within each gender, we also wonder how far they will decrease 
(if at all) in the next century of the Olympics. Might we one 
day witness a sub-2 hour marathon? The study of statistics can 
help you make reasonable guesses about the answers to these 
questions. 

It is also important to differentiate what we use to describe 
populations vs what we use to describe samples. A population 
is described by a parameter; the parameter is the true value of 
the descriptive in the population, but one that we can never 
know for sure. For example, the Bureau of Labor Statistics 
reports that the average hourly wage of chefs or head cooks 
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is $25.66
1
. However, even if this number was computed using 

information from every single chef in the United States 
(making it a parameter), it would quickly become slightly off 
as one chef retires and a new chef enters the job market. 
Additionally, as noted above, there is virtually no way to collect 
data from every single person in a population. In order to 
understand a variable, we estimate the population parameter 
using a sample statistic. Here, the term “statistic” refers to the 
specific number we compute from the data (e.g. the average), 
not the field of statistics. A sample statistic is an estimate of the 
true population parameter, and if our sample is representative 
of the population, then the statistic is considered to be a good 
estimator of the parameter. 

Even the best sample will be somewhat off from the full 
population, earlier referred to as sampling bias, and as a result, 
there will always be a tiny discrepancy between the parameter 
and the statistic we use to estimate it. This difference is known 
as sampling error, and, as we will see throughout the course, 
understanding sampling error is the key to understanding 
statistics. Every observation we make about a variable, be it 
a full research study or observing an individual’s behavior, is 
incapable of being completely representative of all possibilities 
for that variable. 

Knowing where to draw the line between an unusual 
observation and a true difference is what statistics is all about. 

Inferential Statistics 

Descriptive statistics are wonderful at telling us what our data 
look like. However, what we often want to understand is how 
our data behave. What variables are related to other variables? 

1. BLS, 5/2020, median value reported--to be explained in chapter 4 
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Under what conditions will the value of a variable change? Are 
two groups different from each other, and if so, are people 
within each group different or similar? These are the questions 
answered by inferential statistics, and inferential statistics are 
how we generalize from our sample back up to our population. 
Units 2 and 3 are all about inferential statistics, the formal 
analyses and tests we run to make conclusions about our data. 

For example, we will learn how to use a t statistic to 
determine whether people change over time when enrolled in 
an intervention. We will also use an F statistic to determine if 
we can predict future values on a variable based on current 
known values of a variable. There are many types of inferential 
statistics, each allowing us insight into a different behavior of 
the data we collect. This course will only touch on a small 
subset (or a sample) of them, but the principles we learn along 
the way will make it easier to learn new tests, as most 
inferential statistics follow the same structure and format. 

Mathematical Notation 

As noted above, statistics is not math. It does, however, use 
math as a tool. Many statistical formulas involve summing 
numbers. Fortunately there is a convenient notation for 
expressing summation. This section covers the basics of this 
summation notation. 

Let’s say we have a variable X that represents the weights (in 
grams) of 4 grapes: 
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Grape X 

1 4.6 

2 5.1 

3 4.9 

4 4.4 

We label Grape 1’s weight X1, Grape 2’s weight X2, etc. The 
following formula means to sum up the weights of the four 
grapes: 

The Greek letter Σ indicates summation. The “i = 1” at the 
bottom indicates that the summation is to start with X1 and the 
4 at the top indicates that the summation will end with X4. The 
“Xi” indicates that X is the variable to be summed as i goes from 
1 to 4. Therefore, 

The symbol 

indicates that only the first 3 scores are to be summed. The 
index variable i goes from 1 to 3. 

When all the scores of a variable (such as X) are to be 
summed, it is often convenient to use the following 
abbreviated notation: 

Thus, when no values of i are shown, it means to sum all the 
values of X. 
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Many formulas involve squaring numbers before they are 
summed. This is indicated as 

= 21.16 + 26.01 + 24.01 + 19.36 = 90.54 
Notice that: 

because the expression on the left means to sum up all the 
values of X and then square the sum (19² = 361), whereas the 
expression on the right means to square the numbers and then 
sum the squares (90.54, as shown). 

Some formulas involve the sum of cross products. Below are 
the data for variables X and Y. The cross products (XY) are 
shown in the third column. The sum of the cross products is 3 + 
4 + 21 = 28. 

X Y XY 

1 3 3 

2 2 4 

3 7 21 

In summation notation, this is written as: 

Three key concepts for statistical formulas: 

1. Perform summation in the correct order 
following the order of operations (PEMDAS). 
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2. Typically we will use a set of scores for the 
mathematical operations/formulas used in 
statistics. 

3. Each operation, except for summation, 
creates a new column of numbers (we will see 
this in action in chapter 4).  Summation adds 
up the sum for the column and is typically 
seen as the last row. 

Learning Objectives 

Having read this chapter, you should be able to: 

• Familiarize with terminology and special notations of 
statistics. 

• Differentiate and identify different types of research 
design. 

• Differentiate and identify different types of sampling. 
• Distinguish between different types of variables and given 

examples of each of these kinds of variables. 
• Distinguish between the concepts of reliability and validity 

and apply each concept to a particular dataset. 
• Understand and list the three key concepts for using 

summation. 

Exercises – Ch. 2 

1. In your own words, describe why we study statistics. 
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2. For each of the following, determine if the variable is 
continuous or discrete: 

1. Time taken to read a book chapter 
2. Favorite food 
3. Cognitive ability 
4. Temperature 
5. Letter grade received in a class 

3. For each of the following, determine the level of 
measurement: 

1. T-shirt size 
2. Time taken to run 100 meter race 
3. First, second, and third place in 100 meter race 
4. Birthplace 
5. Temperature in Celsius 

4. What is the difference between a population and a 
sample? Which is described by a parameter and which is 
described by a statistic? 

5. What is sampling bias? What is sampling error? 
6. What is the difference between a simple random sample 

and a stratified random sample? 
7. What are the two key characteristics of a true 

experimental design? 
8. When would we use a quasi-experimental design? 
9. Use the following dataset for the computations below: 

X Y 

1 1 

2 3 

5 5 

7 1 

Computations to use for the above data set: 

1. ΣX 
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2. ΣY2 

3. ΣXY 
4. (ΣY)2 

10. What are the most common measures of central 
tendency and spread? 

Answers to Odd-Numbered Exercises – Ch. 
2 

1. Your answer could take many forms but should include 
information about objectively interpreting information and/or 
communicating results and research conclusions 

3. For each of the following, determine the level of 
measurement: 

1. Ordinal 
2. Ratio 
3. Ordinal 
4. Nominal 
5. Interval 

5. Sampling bias is the difference in demographic 
characteristics between a sample and the population it should 
represent. Sampling error is the difference between a 
population parameter and sample statistic that is caused by 
random chance due to sampling bias. 

7. Random assignment to treatment conditions and 
manipulation of the independent variable 

9. Use the following dataset for the computations below: 

1. 15 
2. 36 
3. 39 
4. 100 
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3.  Chapter 3: 
Describing Data using 
Distributions and 
Graphs 

Statistics that are used to organize and summarize the 
information so that the researcher can see what happened 
during the research study and can also communicate the 
results to others are called descriptive statistics.Let us assume 
that the data are quantitative and consist of scores on one or 
more variables for each of several study participants. Although 
in most cases the primary research question will be about one 
or more statistical relationships between variables, it is also 
important to describe each variable individually. We will look 
at some of the most common techniques for describing single 
variables including: 

• Frequency distributions 
• Measures of Central Tendency 
• Measures of Dispersion 

The first step in understanding data is using tables, charts, 
graphs, plots, and other visual tools to see what our data look 
like.  This is known as data visualization. 

We will begin with frequency distributions which are visual 
representations and include tables and graphs. We will 
conclude with some tips for making graphs some principles for 
good data visualization! 

82  |  Chapter 3: Describing Data
using Distributions and Graphs



Data Visualization 

On January 28, 1986, the Space Shuttle Challenger exploded 73 
seconds after takeoff, killing all 7 of the astronauts on board. 
As when any such disaster occurs, there was an official 
investigation into the cause of the accident, which found that 
an O-ring connecting two sections of the solid rocket booster 
leaked, resulting in failure of the joint and explosion of the large 
liquid fuel tank (see figure 1).

1 

The investigation found that 
many aspects of the NASA 
decision-making process 
were flawed, and focused in 
particular on a meeting 
between NASA staff and 
engineers from Morton 
Thiokol, a contractor who 
built the solid rocket 
boosters. These engineers 
were particularly concerned 
because the temperatures 
were forecast to be very cold 
on the morning of the launch, and they had data from previous 
launches showing that performance of the O-rings was 
compromised at lower temperatures. In a meeting on the 
evening before the launch, the engineers presented their data 
to the NASA managers, but were unable to convince them to 

1. Figure 1: An image of the solid rocket booster leaking fuel, seconds 
before the explosion. The small flame visible on the side of the rocket 
is the site of the O-ring failure. By NASA (Great Images in NASA 
Description) [Public domain], via Wikimedia Commons 
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postpone the launch. Their evidence was a set of hand-written 
slides showing numbers from various past launches. 

The visualization expert Edward Tufte has argued that with a 
proper presentation of all of the data, the engineers could have 
been much more persuasive. In particular, they could have 
shown a figure like the one in Figure 2, which highlights two 
important facts. First, it shows that the amount of O-ring 
damage (defined by the amount of erosion and soot found 
outside the rings after the solid rocket boosters were retrieved 
from the ocean in previous flights) was closely related to the 
temperature at takeoff. Second, it shows that the range of 
forecasted temperatures for the morning of January 28 (shown 
in the shaded area) was well outside of the range of all previous 
launches. While we can’t know for sure, it seems at least 
plausible that this could have been more persuasive. 

Figure 2: A replotting of Tufte’s damage index data. The line 
shows the trend in the data, and the shaded patch shows the 
projected temperatures for the morning of the launch. 
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Graphing Qualitative & Quantitative 
Variables 

We’ll learn some general lessons about how to graph 
data that fall into a small number of categories. A 
later section will consider how to graph numerical 
data in which each observation is represented by 
a number in some range. Qualitative variables can 
be summarized by frequency (how often) and 
researchers can then use frequency tables and bar 
charts to show frequencies for categorized 
responses, but we are limited in graphing them due 
to the data not be numerically based. The key point 
about the qualitative data is they do not come with 
a pre-established ordering (the way numbers are 
ordered). 

We are focused on quantitative variables. 
Quantitative data, such as a person’s weight, are 
naturally ordered with respect to people of different 
weights. Often we wish to know if there are any 
scores that might look a bit out of place. A frequency 
distribution is a way to take a disorganized set of 
scores and places them in order from highest to 
lowest and at the same time grouping everyone with 
the same score. Frequency distributions can help 
researchers identify outliers. An outlier is an 
observation of data that does not fit the rest of the 
data. An outlier is sometimes called an extreme 
value. When you graph an outlier, it will appear not 
to fit the pattern of the graph. Some outliers are due 
to mistakes (for example, writing down 50 instead 
of 500) while others may indicate that something 
unusual is happening. 
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Frequency Tables 

All of the graphical methods shown in this section are derived 
from frequency tables. Table 1 shows a frequency table for 
the results of the iMac study; it shows the frequencies of the 
various response categories. It also shows the relative 
frequencies, which are the proportion of responses in each 
category. For example, the relative frequency for “none” of 0.17 
= 85/500. 

Previous Ownership Frequency Relative Frequency 

None 85 0.17 

Windows 60 0.12 

Macintosh 355 0.71 

Total 500     1 

Table 1. Frequency Table for the iMac Data. 

Below is a table (Table 2) showing a hypothetical distribution of 
scores on the Rosenberg Self-Esteem Scale for a sample of 40 
college students. The Rosenburg Self-Esteem Scale is one way 
to operationalize (define) self-esteem in a quantitative way. 
Participants rate each of the 10-items from strongly disagree 
to strongly agree.  All items are then scored yielding an overall 
self-esteem score that would be a numerical value to represent 
one’s self-esteem. 

• Column one lists the values of the variable – the possible 
scores on the Rosenberg scale 

• Column two lists the frequency of each score 
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Self-Esteem Scores Frequency 

24 3 

23 5 

22 10 

21 8 

20 5 

19 3 

18 3 

17 0 

16 2 

15 1 

Table 2. Frequency Table for Rosenburg Self-Esteem Scale 
Scores. 

Table 2 shows that there were three students who had self-
esteem scores of 24, five who had self-esteem scores of 23, and 
so on. From a frequency table like this, one can quickly see 
several important aspects of a distribution, including the range 
of scores (from 15 to 24), the most and least common scores 
(22 and 17, respectively), and any extreme scores that stand out 
from the rest. 

Considerations 

There are a few other points worth noting about frequency 
tables. First, the levels listed in the first column usually go from 
the highest at the top to the lowest at the bottom, and they 
usually do not extend beyond the highest and lowest scores 
in the data.  For example, although scores on the Rosenberg 
scale can vary from a high of 30 to a low of 0 only includes 
levels from 24 to 15 because that range includes all the scores 
in this particular data set. All scores within the data set must 
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be presented. For example, no one received a score of 17 on the 
Rosenberg Self-esteem scale; it is still represented in the table. 

Additionally, when there are many different scores across a 
wide range of values, it is often better to create a grouped 
frequency table, in which the first column lists ranges of values 
and the second column lists the frequency of scores in each 
range. In a grouped frequency table, the ranges must all be 
of equal width, and there are usually between five and 15 of 
them. Finally, frequency tables can also be used for categorical 
variables, in which case the levels are category labels. The order 
of the category labels is somewhat arbitrary, but they are often 
listed from the most frequent at the top to the least frequent 
at the bottom. Table 3 shows an example for majors where 
majors is a categorical (nominal) variable. 

Majors Frequency 

Business 30 

Psychology 50 

Nursing 102 

Nutritional Sciences 10 

Communications 5 

English 3 

Computer Science 13 

Table 3. Frequency Table for Majors 

Graphs 

A statistical graph is a tool that helps you learn about the shape 
or distribution of a sample or a population. A graph can be a 
more effective way of presenting data than a mass of numbers 
because we can see where data clusters and where there are 
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only a few data values. Statisticians often graph data first to get 
a picture of the data; then, more formal tools may be applied. 

Some of the types of graphs that are used to summarize and 
organize quantitative data are the dot plot, the bar graph, the 
histogram, the stem-and-leaf plot, the frequency polygon (a 
type of broken line graph), the pie chart, and the box plot. In 
this lesson, we will briefly look at bar graphs, histograms, and 
frequency polygons. 

Bar charts 
Bar charts can also be used to represent frequencies of 

different categories. Bar charts may be appropriate for 
qualitative data (categorical variables) that use a nominal or 
ordinal scale of measurement. A bar chart of the iMac 
purchases is shown in Figure 2. Frequencies are shown on the 
Y- axis and the type of computer previously owned is shown 
on the X-axis. Typically, the Y-axis shows the number of 
observations in each category (rather than the percentage of 
observations in each category as is typical in pie charts). 
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Figure 2. Bar chart of iMac purchases as a function of 
previous computer ownership. 

Often we need to compare the results of different surveys, 
or of different conditions within the same overall survey. In 
this case, we are comparing the “distributions” of responses 
between the surveys or conditions. Bar charts are often 
excellent for illustrating differences between two distributions. 
Figure 3 shows the number of people playing card games at 
the Yahoo website on a Sunday and on a Wednesday in the 
spring of 2001. We see that there were more players overall 
on Wednesday compared to Sunday. The number of people 
playing Pinochle was nonetheless the same on these two days. 
In contrast, there were about twice as many people playing 
hearts on Wednesday as on Sunday. Facts like these emerge 
clearly from a well-designed bar chart. 
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Comparing Distributions 

Figure 3. A bar chart of the number of people playing 
different card games on Sunday and Wednesday. 

The bars in Figure 3 are oriented horizontally rather than 
vertically. The horizontal format is useful when you have many 
categories because there is more room for the category labels. 
We’ll have more to say about bar charts when we consider 
numerical quantities later in this chapter. 
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Some graphical mistakes to avoid with bar 
charts 

Don’t get fancy! People sometimes add features to graphs that 
don’t help to convey their information. See the examples below 
as things not to do! Three-dimensional figures are less clear 
than 2-d.  Further, don’t get creative as show below! Use plain 
bars, as tempting as it is to substitute meaningful images. The 
MacIntosh is out of proportion to the None and Windows 
categories. Edward Tufte coined the term “lie factor” to refer 
to the ratio of the size of the effect shown in a graph to the 
size of the effect shown in the data. If a graphic has a lie factor 
near 1, then it is appropriately representing the data, whereas 
lie factors far from one reflect a distortion of the underlying 
data. The computer monitor bar figure has a lie factor of about 
8! He suggests that lie factors greater than 1.05 or less than 0.95 
produce unacceptable distortion-so just keep it simple with 
plain bars! 
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Figures 4 & 5. A three-dimensional version of Figure 2 and 
a redrawing of Figure 2 with disproportionate bars. 

Here is another example, Figure 3.6 (created using Microsoft 
Excel) plots the relative popularity of different religions in the 
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United States. There are at least three things wrong with this 
figure -can you identify them? 

Figure 6. A bad chart graph 

Did you figure it what is wrong? 

• it has graphics overlaid on each of the bars that 
have nothing to do with the actual data 

• it has a distracting background texture 
• it uses three-dimensional bars, which distort 

the data 

 
Another distortion in bar charts results from setting the 

baseline to a value other than zero. The baseline is the bottom 
of the Y-axis, representing the least number of cases that could 
have occurred in a category. Normally, but not always, this 
number should be zero. Figure 7 shows the iMac data with a 
baseline of 50. Once again, the differences in areas suggests 
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a different story than the true differences in percentages. The 
number of Windows-switchers seems minuscule compared to 
its true value of 12%. 

Figure 7. A redrawing of Figure 2 with a baseline of 50. 

Finally, we note that it is a serious mistake to use a line graph 
when the X-axis contains merely qualitative (or categorical) 
variables. A line graph is essentially a bar graph with the tops 
of the bars represented by points joined by lines (the rest of 
the bar is suppressed). Figure 8 inappropriately shows a line 
graph of the card game data from Yahoo. The drawback to 
Figure 8 is that it gives the false impression that the games 
are naturally ordered in a numerical way when, in fact, they are 
ordered alphabetically. 
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Figure 8. A line graph used inappropriately to depict the 
number of people playing different card games on Sunday 
and Wednesday. 

Recap 

Bar charts can be effective methods of portraying qualitative 
data. Bar charts are better when there are more than just a 
few categories and for comparing two or more distributions. Be 
careful to avoid creating misleading graphs. 

Graphing Quantitative Variables 

As discussed in the section on variables in Chapter 1, 
quantitative variables are variables measured on a numeric 
scale. Height, weight, response time, subjective rating of pain, 
temperature, and score on an exam are all examples of 
quantitative variables. Quantitative variables are distinguished 
from categorical (sometimes called qualitative) variables such 
as favorite color, religion, city of birth, favorite sport in which 
there is no ordering or measuring involved. 
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There are many types of graphs that can be used to portray 
distributions of quantitative variables. We already reviewed bar 
charts. The upcoming sections cover the following types of 
graphs: (1) histograms, (2) frequency polygons, (3) stem and leaf 
displays, (4) box plots, (5) more bar charts, (6) line graphs, and 
(7) scatter plots (discussed in a different chapter). Some graph 
types such as stem and leaf displays are best suited for small to 
moderate amounts of data, whereas others such as histograms 
are best- suited for large amounts of data. Graph types such 
as box plots are good at depicting differences between 
distributions. Scatter plots are used to show the relationship 
between two variables. 

Histograms 

A histogram is a graphic version of a frequency distribution. It 
helps to display the shape of a distribution. The graph consists 
of bars of equal width drawn adjacent to each other and has 
both a horizontal axis and a vertical axis. The horizontal axis 
(x-axis) is labeled with what the data represents (for instance, 
distance from your home to school). The vertical axis is labeled 
either frequency or relative frequency (or percent frequency or 
probability). The histogram shows the distribution of the values 
including the highest, middle, and lowest values. 

Sometimes we need to group scores if the data has a large 
distribution. For example, if I wanted to create a frequency 
distribution of 642 students’ scores on a psychology test, that 
would be a big frequency table. For reference, the test consists 
of 197 items each graded as “correct” or “incorrect.” The 
students’ scores ranged from 46 to 167. A simple frequency 
table would be too big, containing over 100 rows. To simplify 
the table, we group scores together as shown in Table 4. A basic 
rule for grouping data is to make sure each group (or class) has 
the same grouping amount (in this example it is grouped in 
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10s), and to make sure you have the lowest category including 
your lowest value to make sure all scores are included. 

Interval’s Lower 
Limit 

Interval’s Upper 
Limit 

Class 
Frequency 

39.5 49.5      3 

49.5 59.5 10 

59.5 69.5 53 

69.5 79.5 107 

79.5 89.5 147 

89.5 99.5 130 

99.5 109.5 78 

109.5 119.5 59 

119.5 129.5 36 

129.5 139.5 11 

139.5 149.5      6 

149.5 159.5      1 

159.5 169.5      1 

Table 4. Grouped Frequency Distribution of Psychology Test 
Scores 

To create this table, the range of scores was broken into 
intervals, called class intervals. The first interval is from 39.5 to 
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49.5, the second from 49.5 to 59.5, etc. Next, the number of 
scores falling into each interval was counted to obtain the 
class frequencies. There are three scores in the first interval, 10 
in the second, etc. For this data set, class intervals of width 10 
provide enough detail about the distribution to be revealing 
without making the graph too “choppy.” More information on 
choosing the widths of class intervals is presented later in this 
section. Placing the limits of the class intervals midway 
between two numbers (e.g., 49.5) ensures that every score will 
fall in an interval rather than on the boundary between 
intervals. If you add up all the scores for the class frequencies 
you will get to the total number of scores (in this example 642). 

In a histogram, the class intervals are represented by bars. The 
height of each bar corresponds to its class frequency. A 
histogram of these data is shown in Figure 9. 

Figure 9. Histogram of scores on a psychology test. 
The histogram makes it plain that most of the scores are in the 
middle of the distribution, with fewer scores in the extremes. 
You can also see that the distribution is not symmetric: the 
scores extend to the right farther than they do to the left. The 
distribution is therefore said to be skewed. (We’ll have more to 
say about shapes of distributions a little later in the chapter). 
In our example, the observations are whole numbers. 
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Histograms can also be used when the scores are measured 
on a more continuous scale such as the length of time (in 
milliseconds) required to perform a task. In this case, there is 
no need to worry about fence sitters since they are 
improbable. (It would be quite a coincidence for a task to 
require exactly 7 seconds, measured to the nearest 
thousandth of a second.) We are therefore free to choose 
whole numbers as boundaries for our class intervals, for 
example, 4000, 5000, etc. The class frequency is then the 
number of observations that are greater than or equal to the 
lower bound, and strictly less than the upper bound. For 
example, one interval might hold times from 4000 to 4999 
milliseconds. Using whole numbers as boundaries avoids a 
cluttered appearance, and is the practice of many computer 
programs that create histograms. 
Histograms can be based on relative frequencies instead of 
actual frequencies. Histograms based on relative frequencies 
show the proportion of scores in each interval rather than the 
number of scores. In this case, the Y-axis runs from 0 to 1 (or 
somewhere in between if there are no extreme proportions). 
You can change a histogram based on frequencies to one 
based on relative frequencies by (a) dividing each class 
frequency by the total number of observations, and then (b) 
plotting the quotients on the Y-axis (labeled as proportion). 

There is more to be said about the widths of the class intervals, 
sometimes called bin widths. Your choice of bin width 
determines the number of class intervals. This decision, along 
with the choice of starting point for the first interval, affects 
the shape of the histogram. The best advice is to experiment 
with different choices of width, and to choose a histogram 
according to how well it communicates the shape of the 
distribution. 
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Frequency Polygons 

Frequency polygons are a graphical device for understanding 
the shapes of distributions. They serve the same purpose as 
histograms, but are especially helpful for comparing sets of 
data. Frequency polygons are also a good choice for displaying 
cumulative frequency distributions. 
To create a frequency polygon, start just as for histograms, by 
choosing a class interval. Then draw an X-axis representing the 
values of the scores in your data. Mark the middle of each class 
interval with a tick mark, and label it with the middle value 
represented by the class. Draw the Y-axis to indicate the 
frequency of each class. Place a point in the middle of each 
class interval at the height corresponding to its frequency. 
Finally, connect the points. You should include one class 
interval below the lowest value in your data and one above the 
highest value. The graph will then touch the X-axis on both 
sides. 

A frequency polygon for 642 psychology test scores shown in 
Figure 12 was constructed from the frequency table shown in 
Table 5. 
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Lower Limit Upper Limit Count Cumulative C

29.5 39.5      0 0 

39.5 49.5      3 3 

49.5 59.5 10 13 

59.5 69.5 53 66 

69.5 79.5 107 173 

79.5 89.5 147 320 

89.5 99.5 130 450 

99.5 109.5 78 528 

109.5 119.5 59 587 

119.5 129.5 36 623 

129.5 139.5  11 634 

139.5 149.5      6 640 

149.5 159.5       1 641 

159.5 169.5       1 642 

169.5 170.5       0 642 

Table 5. Frequency Distribution of Psychology Test Scores 
The first label on the X-axis is 35. This represents an interval 
extending from 29.5 to 39.5. Since the lowest test score is 46, 
this interval has a frequency of 0. The point labeled 45 
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represents the interval from 39.5 to 49.5. There are three scores 
in this interval. There are 147 scores in the interval that 
surrounds 85. 

You can easily discern the shape of the distribution from Figure 
10. Most of the scores are between 65 and 115. It is clear that the 
distribution is not symmetric inasmuch as good scores (to the 
right) trail off more gradually than poor scores (to the left). We 
call this skew and we will study shapes of distributions more 
systematically later in this chapter. 

Figure 10. Frequency polygon for the psychology test scores. 

A cumulative frequency polygon for the same test scores is 
shown in Figure 11. The graph is the same as before except that 
the Y value for each point is the number of students in the 
corresponding class interval plus all numbers in lower intervals. 
For example, there are no scores in the interval labeled “35,” 
three in the interval “45,” and 10 in the interval “55.” Therefore, 
the Y value corresponding to “55” is 13. Since 642 students took 
the test, the cumulative frequency for the last interval is 642. 
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Figure 11. Cumulative frequency polygon for the psychology 
test scores. 

Frequency polygons are useful for comparing distributions. 
This is achieved by overlaying the frequency polygons drawn 
for different data sets. Figure 12 provides an example. The data 
come from a task in which the goal is to move a computer 
cursor to a target on the screen as fast as possible. On 20 
of the trials, the target was a small rectangle; on the other 
20, the target was a large rectangle. Time to reach the target 
was recorded on each trial. The two distributions (one for each 
target) are plotted together in Figure 15. The figure shows that, 
although there is some overlap in times, it generally took 
longer to move the cursor to the small target than to the large 
one. 
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Figure 12. Overlaid frequency polygons. 

It is also possible to plot two cumulative frequency 
distributions in the same graph. This is illustrated in Figure 13 
using the same data from the cursor task. The difference in 
distributions for the two targets is again evident. 

Figure 13. Overlaid cumulative frequency polygons. 
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Stem and Leaf 

The stem-and-leaf graph or stemplot, comes from the field of 
exploratory data analysis. It is a good choice when the data sets 
are small. To create the plot, divide each observation of data 
into a stem and a leaf. The leaf consists of a final significant 
digit. For example, 23 has stem two and leaf three. Write the 
stems in a vertical line from smallest to largest. Draw a vertical 
line to the right of the stems. Then write the leaves in 
increasing order next to their corresponding stem. 
Assume the data on the left represents scores from a statistics 
exam last spring. It is random and unorganized. On the right, 
you can see we have separated the scores into the stems and 
leaves. The stemplot shows that most scores were in the 70s. 
The lowest score was 32 and the highest score was 97. 

Figure 14. Stem and Leaf Plot 

Box Plots 

We have already discussed techniques for visually representing 
data (see histograms and frequency polygons). In this section, 
we present another important graph, called a box plot. Box 
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plots are useful for identifying outliers (extreme scores) and 
for comparing distributions. We will explain box plots with the 
help of data from an in-class experiment. Students in 
Introductory Statistics were presented with a page containing 
30 colored rectangles. Their task was to name the colors as 
quickly as possible. Their times (in seconds) were recorded. 
We’ll compare the scores for the 16 men and 31 women who 
participated in the experiment by making separate box plots 
for each gender. Such a display is said to involve parallel box 
plots. 
There are several steps in constructing a box plot. The first 
relies on the 25th, 50th, and 75th percentiles in the distribution 
of scores. Figure 15 shows how these three statistics are used. 
For each gender we draw a box extending from the 25th 
percentile to the 75th percentile. The 50th percentile is drawn 
inside the box. 

Therefore, the bottom of each box is the 25th percentile, the 
top is the 75th percentile, and the line in the middle is the 50th 
percentile. The data for the women in our sample are shown in 
Table 6. 

14, 15, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 19, 19, 19 

20, 20, 20, 20, 20, 20, 21, 21, 22, 23, 24, 24, 29 

Table 6. Women’s times. 

For these data, the 25th percentile is 17, the 50th percentile is 
19, and the 75th percentile is 20. For the men (whose data are 
not shown), the 25th percentile is 19, the 50th percentile is 22.5, 
and the 75th percentile is 25.5. 
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Figure 15. The first step in creating box plots is to identify 
appropriate quartiles. 

Before proceeding, the terminology in Table 7 is helpful. 
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Name Formula Value from 
example 

Upper Hinge 75th Percentile 20 

Lower Hinge 25th Percentile 17 

H-Spread Upper Hinge – Lower Hinge    3 

Step  1.5 x H-Spread 4.5 

Upper 
Adjacent 

Largest value below Upper 
Hinge + 1 Step 24 

Lower 
Adjacent 

 Smallest value above Lower 
Hinge + 1 Step 14 

Outside value/
Outlier 

 Value beyond “whiskers” 29 

Table 7. Box plot terms and values for women’s times. 
Continuing with the box plots, we put “whiskers” 

above and below each box to give additional 
information about the spread of data. Whiskers are 
vertical lines that end in a horizontal stroke. 
Whiskers are drawn from the upper and lower 
hinges to the upper and lower adjacent values (24 
and 14 for the women’s data), as shown in Figure 16. 
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Figure 16. The box plots with the whiskers drawn. 
Although whiskers may not cover all data points, 

we still wish to represent data outside whiskers in 
our box plots. This is achieved by adding additional 
marks beyond the whiskers. Specifically, outside 
values are indicated by small “o’s” and outlier values 
are indicated by asterisks (*). In our data, there are 
no far-out values and just one outside value. This 
outside value of 29 is for the women and is shown in 
Figure 17. 
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Figure 17. The box plots with the outside value shown. 
There is one more mark to include in box plots 

(although sometimes it is omitted). We indicate the 
mean score for a group by inserting a plus sign. A 
mean is one type of average we will learn about 
calculating in the next chapter. Figure 18 shows the 
result of adding means to our box plots. 
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Figure 18. The completed box plots. 

Figure 18 provides a revealing summary of the data. Since half 
the scores in a distribution are between the hinges (recall that 
the hinges are the 25th and 75th percentiles), we see that half 
the women’s times are between 17 and 20 seconds whereas 
half the men’s times are between 19 and 25.5 seconds. We also 
see that women generally named the colors faster than the 
men did, although one woman was slower than almost all of 
the men. 

The Shape of Distribution 

Finally, it is useful to present discussion on how we describe the 
shapes of distributions, which we will revisit in the next chapter 
to learn how different shapes affect our numerical descriptors 
of data and distributions. 

The primary characteristic we are concerned about when 
assessing the shape of a distribution is whether the distribution 
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is symmetrical or skewed. A symmetrical distribution, as the 
name suggests, can be cut down the center to form 2 mirror 
images. Although in practice we will never get a perfectly 
symmetrical distribution, we would like our data to be as close 
to symmetrical as possible for reasons we delve into in Chapter 
3. Many types of distributions are symmetrical, but by far the 
most common and pertinent distribution at this point is the 
normal distribution, shown in Figure 19. Notice that although 
the symmetry is not perfect (for instance, the bar just to the 
right of the center is taller than the one just to the left), the two 
sides are roughly the same shape. The normal distribution has 
a single peak, known as the center, and two tails that extend 
out equally, forming what is known as a bell shape or bell curve. 

Figure 19. A symmetrical distribution 

Symmetrical distributions can also have multiple peaks. Figure 
20 shows a bimodal distribution, named for the two peaks that 
lie roughly symmetrically on either side of the center point. 
As we will see in the next chapter, this is not a particularly 
desirable characteristic of our data, and, worse, this is a 
relatively difficult characteristic to detect numerically. Thus, it is 
important to visualize your data before moving ahead with any 
formal analyses. 
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Figure 20. A bimodal distribution 
Distributions that are not symmetrical also come in many 
forms, more than can be described here. The most common 
asymmetry to be encountered is referred to as skew, in which 
one of the two tails of the distribution is disproportionately 
longer than the other. This property can affect the value of the 
averages we use in our analyses and make them an inaccurate 
representation of our data, which causes many problems. 

Skew can either be positive or negative (also known as right 
or left, respectively), based on which tail is longer. It is very 
easy to get the two confused at first; many students want to 
describe the skew by where the bulk of the data (larger portion 
of the histogram, known as the body) is placed, but the correct 
determination is based on which tail is longer. You can think of 
the tail as an arrow: whichever direction the arrow is pointing is 
the direction of the skew. Figures 21 and 22 show positive (right) 
and negative (left) skew, respectively. 
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Figure 21. A positively skewed distribution 

Figure 22. A negatively skewed distribution 

A tip to remember skewness 

Tip: Take a look down at your feet! 
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The left foot shows a negative skew (tail is pinky).  The 
right foot is a positive skew. 

 

Recap 
Whether you are using a table or a graph the same two 

elements of frequency distribution must be present: 

1. the entire set of categories that make-up the original 
distribution must be included 

2. a record of the frequency, or number of individuals in each 
category within the distribution must be included 

Examining our data graphically is useful and there are different 
choices in graphing depending on what is needed and the 
type of data you have. The scale of measurement determines 
the most appropriate graph to use. Bar charts are used to 
display qualitative data along a nominal or ordinal scale of 
measurement. Histograms, frequency polygons, stem and leaf 
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plots, and box plots are most appropriate when using interval 
or ratio scales of measurement. 

Box plots provide basic information about the distribution, 
examining data according to quartiles. By examining a box plot 
you are able to identify more about the distribution (see Figure 
X). For example, a distribution with a positive skew would have 
a longer box and whisker above the 50th percentile (median) 
in the positive direction than in the negative direction (middle 
boxplot in Figure 23). Box plots are good at portraying extreme 
values and are especially good at showing differences between 
distributions. However, many of the details of a distribution are 
not revealed in a box plot and to examine these details one 
should use create a histogram and/or a stem and leaf plot. 

Figure 23. Examples of distributions in Box plots. 
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Graphing Beyond Frequency 

In this section, we will briefly review some graphing techniques 
that extend beyond reporting frequencies. 

Bar charts beyond frequency 

In this section we show how bar charts can be used to present 
other kinds of quantitative information, not just frequency 
counts. The bar chart in Figure 24 shows the percent increases 
in the Dow Jones, Standard and Poor 500 (S & P), and Nasdaq 
stock indexes from May 24th 2000 to May 24th 2001. Notice 
that both the S & P and the Nasdaq had “negative increases” 
which means that they decreased in value. In this bar chart, 
the Y-axis is not frequency but rather the signed quantity 
percentage increase. 

Figure 24. Percent increase in three stock indexes from May 
24th 2000 to May 24th 2001. 

Bar charts are particularly effective for showing change over 
time. Figure 25, for example, shows the percent increase in the 
Consumer Price Index (CPI) over four three-month periods. The 
fluctuation in inflation is apparent in the graph. 
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Figure 25. Percent change in the CPI over time. Each bar 
represents a percent increase for the three months ending at 
the date indicated. 

Bar charts are often used to compare the means of different 
experimental conditions. Figure 26 shows the mean time it 
took one of us (DL) to move the cursor to either a small target 
or a large target. On average, more time was required for small 
targets than for large ones. 

Figure 26. Bar chart showing the means for the two 
conditions. 
Although bar charts can display means, we do not 
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recommend them for this purpose. Box plots should be used 
instead since they provide more information than bar charts 
without taking up more space. For example, a box plot of the 
cursor-movement data is shown in Figure 27. You can see that 
Figure 27 reveals more about the distribution of movement 
times than does Figure 26. 

Figure 27. Box plots of times to move the cursor to the small 
and large targets. 

Line Graphs Beyond Frequency 

A line graph is a bar graph with the tops of the bars 
represented by points joined by lines (the rest of the bar is 
suppressed). For example, Figure 28 was presented in the 
section on bar charts and shows changes in the Consumer 
Price Index (CPI) over time. 
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Figure 28. A bar chart of the percent change in the CPI 
over time. Each bar represents percent increase for the three 
months ending at the date indicated. 

A line graph of these same data is shown in Figure 29. 
Although the figures are similar, the line graph emphasizes the 
change from period to period. 

Figure 29. A line graph of the percent change in the CPI 
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over time. Each point represents percent increase for the three 
months ending at the date indicated. 

Line graphs are appropriate only when both the X- and Y-
axes display ordered (rather than qualitative) variables. 
Although bar charts can also be used in this situation, line 
graphs are generally better at comparing changes over time. 
Figure 30, for example, shows percent increases and decreases 
in five components of the CPI. The figure makes it easy to 
see that medical costs had a steadier progression than the 
other components. Although you could create an analogous 
bar chart, its interpretation would not be as easy. Again, let us 
stress that it is misleading to use a line graph when the X-axis 
contains merely categorical variables. 

Figure 30. A line graph of the percent change in five 
components of the CPI over time 
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Beyond Frequencies: Which graph to use? 

There are many different types of plots that we can use, which 
have different advantages and disadvantages. Let’s say that 
we are interested in characterizing the difference in height 
between men and women in the NHANES dataset. Figure 31 
shows four different ways to plot these data. 

1. The bar graph in panel A shows the difference in means (a 
type of average), but doesn’t show us how much spread 
there is in the data around these means – and as we will 
see later, knowing this is essential to determine whether 
we think the difference between the groups is large 
enough to be important. 

2. The second plot shows the bars with all of the data points 
overlaid – this makes it a bit clearer that the distributions 
of height for men and women are overlapping, but it’s still 
hard to see due to the large number of data points. 

In general we prefer using a plotting technique that provides a 
clearer view of the distribution of the data points. 

3. In panel C, we see one example of a violin plot, which plots 
the distribution of data in each condition (after smoothing 
it out a bit). 

4. Another option is the box plot shown in panel D, which 
shows the median (another type of average, central line), a 
measure of variability (the width of the box, which is based 
on a measure called the interquartile range), and any 
outliers (noted by the points at the ends of the lines). 
These are both effective ways to show data that provide a 
good feel for the distribution of the data. 
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Figure 34: Four different ways of plotting the difference in 
height between men and women in the NHANES dataset. 
Panel A plots the means of the two groups, which gives no way 
to assess the relative overlap of the two distributions. Panel B 
shows the same bars, but also overlays the data points, jittering 
them so that we can see their overall distribution. Panel C 
shows a violin plot, which shows the distribution of the datasets 
for each group. Panel D shows a box plot, which highlights the 
spread of the distribution along with any outliers (which are 
shown as individual points). 

Avoid distorting the data 

It’s often possible to use visualization to distort the message of 
a dataset. A very common one is use of different axis scaling to 

124  |  Chapter 3: Describing Data using Distributions and Graphs



either exaggerate or hide a pattern of data. For example, let’s 
say that we are interested in seeing whether rates of violent 
crime have changed in the US. In Figure 35, we can see these 
data plotted in ways that either make it look like crime has 
remained constant, or that it has plummeted. The same data 
can tell two very different stories! 

Figure 35: Crime data from 1990 to 2014 plotted over time. 
Panels A and B show the same data, but with different ranges 
of values along the Y axis. Data obtained from 
https://www.ucrdatatool.gov/Search/Crime/State/
RunCrimeStatebyState.cfm 

Choose the Y-axis wisely 

We mentioned this tip when we went over bar charts, but it 
is worth reviewing again. One of the major controversies in 
statistical data visualization is how to choose the Y-axis, and in 
particular whether it should always include zero. In his famous 
book “How to lie with statistics”, Darrell Huff argued strongly 
that one should always include the zero point in the Y axis. On 
the other hand, Edward Tufte has argued against this: 

“In general, in a time-series, use a baseline that shows 
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the data not the zero point; don’t spend a lot of empty 
vertical space trying to reach down to the zero point at 
the cost of hiding what is going on in the data line itself.” 
(from https://qz.com/418083/its-ok-not-to-start-your-y-
axis-at-zero/) 

There are certainly cases where using the zero point makes no 
sense at all. Let’s say that we are interested in plotting body 
temperature for an individual over time. In Figure 36 we plot 
the same (simulated) data with or without zero in the Y-axis. It 
should be obvious that by plotting these data with zero in the 
Y-axis (Panel A) we are wasting a lot of space in the figure, given 
that body temperature of a living person could never go to 
zero! By including zero, we are also making the apparent jump 
in temperature during days 21-30 much less evident. In general, 
my inclination for line plots and scatterplots is to use all of the 
space in the graph, unless the zero point is truly important to 
highlight. 

Figure 36: Body temperature over time, plotted with or 
without the zero point in the Y axis. 

 

Avoid pie charts 

This is one reason why statisticians never use pie charts: It can 
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be very difficult for humans to accurately perceive differences 
in the volume of shapes. Pie charts are not recommended 
when you have a large number of categories. Pie charts can 
also be confusing when they are used to compare the 
outcomes of two different surveys or experiments. In an 
influential book on the use of graphs, Edward Tufte asserted 
“The only worse design than a pie chart is several of them.” The 
pie chart in Figure 37 (presenting the same data on religious 
affiliation that we showed above) shows how tricky this can be. 
Can you spot the issues in reading this graph? 

Figure 37: An example of a pie chart, highlighting the 
difficulty in apprehending the relative volume of the different 
pie slices. 

This plot is terrible for several reasons. First, it requires 
distinguishing a large number of colors from very small 
patches at the bottom of the figure. Second, the visual 
perspective distorts the relative numbers, such that the pie 
wedge for Catholic appears much larger than the pie wedge 
for None, when in fact the number for None is slightly larger 
(22.8 vs 20.8 percent), as was evident in Figure 37. Third, by 
separating the legend from the graphic, it requires the viewer 
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to hold information in their working memory in order to map 
between the graphic and legend and to conduct many “table 
look-ups” in order to continuously match the legend labels to 
the visualization. And finally, it uses text that is far too small, 
making it impossible to read without zooming in. 

Plotting the data using a more reasonable approach (Figure 
38), we can see the pattern much more clearly. This plot may 
not look as flashy as the pie chart generated using Excel, but 
it’s a much more effective and accurate representation of the 
data. 

Figure 38: A clearer presentation of the religious affiliation 
data (obtained from http://www.pewforum.org/religious-
landscape-study/). 

This plot allows the viewer to make comparisons based on the 
length of the bars along a common scale (the y-axis). Humans 
tend to be more accurate when decoding differences based on 
these perceptual elements than based on area or color. 

Learning objectives 

Having read this chapter, you should be able to: 
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• Identify different types of graphs and when we would use 
them based on the type of data 

• Differentiate between different types of frequency graphs 
• Identify the shape of a distribution in a frequency graph. 
• Identify good versus bad graphs using some basic tips and 

principles 
• Promise to never create a pie chart. 

Exercises – Ch. 3 

1. Name some ways to graph quantitative variables and 
some ways to graph qualitative variables. 

2. Given the following data, construct a pie chart and a bar 
chart. Which do you think is the more appropriate or 
useful way to display the data? 

3. Pretend you are constructing a histogram for describing 
the distribution of salaries for individuals who are 40 years 
or older, but are not yet retired. 

1. What is on the Y-axis? Explain. 
2. What is on the X-axis? Explain. 
3. What would be the probable shape of the salary 

distribution? Explain why.

4. A graph appears below showing the number of adults and 
children who prefer each type of soda. There were 130 
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adults and kids surveyed. Discuss some ways in which the 
graph below could be improved. 

5. Which of the box plots on the graph has a large positive 
skew? Which has a large negative skew? 

6. Create a histogram of the following data representing how 
many shows children said they watch each day. 

7. Explain the differences between bar charts and 
histograms. When would each be used 

8. Draw a histogram of a distribution that is 
Negatively skewed 
Symmetrical 
Positively skewed 

9. Based on the pie chart below, which was made from a 
sample of 300 students, construct a frequency table of college 
majors. 
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10. Create a histogram of the following data. Label the tails 
and body and determine if it is skewed (and direction, if so) or 
symmetrical. 
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Hours worked per week Proportion 

0-10 4 

10-20 8 

20-30 11 

30-40 51 

40-50 12 

50-60 9 

60+ 5 

Answers to Odd-Numbered Exercises – Ch. 
3 

1. Qualitative variables are displayed using pie charts and bar 
charts. Quantitative variables are displayed as box plots, 
histograms, etc. 

3. [You do not need to draw the histogram, only describe it 
below] 

• The Y-axis would have the frequency or proportion 
because this is always the case in histograms 

• The X-axis has income, because this is out quantitative 
variable of interest 

• Because most income data are positively skewed, this 
histogram would likely be skewed positively too 

5. Chart b has the positive skew because the outliers (dots 
and asterisks) are on the upper (higher) end; chart c has the 
negative skew because the outliers are on the lower end. 
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7. In bar charts, the bars do not touch; in histograms, the bars 
do touch. Bar charts are appropriate for qualitative variables, 
whereas histograms are better for quantitative variables. 

9. Use the following dataset for the computations below: 

Major Freq 

Psychology 144 

Biology 120 

Chemistry 24 

Physics 12 
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4.  Chapter 4: Measures 
of Central Tendency 

Now that we have visualized our data to understand 
its shape, we can begin with numerical analyses! The 
descriptive statistics presented in this chapter serve 
to start to describe the distribution of our data 
objectively and mathematically – our first step into 
statistical analysis! The topics here will serve as the 
basis for everything we do in the rest of the course. 

Review: There are four different scales of measurement that 
go along with these different ways that values of a variable 
can differ. 

Nominal scale. A nominal variable satisfies the 
criterion of identity, such that each value of the variable 
represents something different, but the numbers 
simply serve as qualitative labels as discussed above. 
For example, we might ask people for their political 
party affiliation, and then code those as numbers: 1 = 
“Republican”, 2 = “Democrat”, 3 = “Libertarian”, and so 
on. However, the different numbers do not have any 
ordered relationship with one another. 

Ordinal scale. An ordinal variable satisfies the criteria 
of identity and magnitude, such that the values can be 
ordered in terms of their magnitude. For example, we 
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might ask a person with chronic pain to complete a 
form every day assessing how bad their pain is, using a 
1-7 numeric scale. Note that while the person is 
presumably feeling more pain on a day when they 
report a 6 versus a day when they report a 3, it wouldn’t 
make sense to say that their pain is twice as bad on the 
former versus the latter day; the ordering gives us 
information about relative magnitude, but the 
differences between values are not necessarily equal in 
magnitude. 

Interval scale. An (equal) interval scale has all of the 
features of an ordinal scale, but in addition, the 
intervals between units on the measurement scale can 
be treated as equal. A standard example is physical 
temperature measured in Celsius or Fahrenheit; the 
physical difference between 10 and 20 degrees is the 
same as the physical difference between 90 and 100 
degrees, but each scale can also take on negative 
values. 

Ratio scale. A ratio scale variable has all four of the 
features outlined above: identity, magnitude, equal 
intervals, and absolute zero. The difference between a 
ratio scale variable and an interval scale variable is that 
the ratio scale variable has a true zero point. Examples 
of ratio scale variables include physical height and 
weight, along with temperature measured in Kelvin. 

There are two important reasons that we must pay attention 
to the scale of measurement of a variable. First, the scale 
determines what kind of mathematical operations we can 
apply to the data (see Table 1). A nominal variable can only 
be compared for equality; that is, do two observations on that 
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variable have the same numeric value? It would not make 
sense to apply other mathematical operations to a nominal 
variable, since they don’t really function as numbers in a 
nominal variable, but rather as labels. With ordinal variables, 
we can also test whether one value is greater or lesser than 
another, but we can’t do any arithmetic. Interval and ratio 
variables allow us to perform arithmetic; with interval variables 
we can only add or subtract values, whereas with ratio variables 
we can also multiply and divide values. 

Table 1: Different scales of measurement admit 
different types of numeric operations 

Equal/not equal >/< +/- Multiply/divide 

Nominal OK 

Ordinal OK OK 

Interval OK OK OK 

Ratio OK OK OK OK 

These constraints also imply that there are certain kinds of 
statistics that we can compute on each type of variable. 
Statistics that simply involve counting different values (such 
as the most common value, known as the mode), can be 
calculated on any of the variable types. Other statistics are 
based on ordering or ranking of values (such as the median, 
which is the middle value when all of the values are ordered 
by their magnitude), and these require that the value at least 
be on an ordinal scale. Finally, statistics that involve adding up 
values (such as the average, or mean), require that the variables 
be at least on an interval scale. Having said that, we should note 
that it’s quite common for researchers to compute the mean of 
variables that are only ordinal (such as responses on personality 
tests), but this can sometimes be problematic. 
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What is Central Tendency? 

Therefore, a measure of central tendency is a way to summarize 
a large set of numbers using one single score. We can use 
measures of central tendency to describe a single distribution 
or compare multiple sets of scores but we have to figure out 
which measure of central tendency best represents a given 
distribution. 

You might be thinking this is simple. After all, finding the 
“center” of a distribution involves just looking at it but let’s look 
at the 3 frequency distributions below and decide subjectively 
what the most typical or representative “center” score would 
be. 

Figure 1. Three different distributions 
These distributions demonstrate that finding the center of a 

distribution may be more challenging than first thought. 
Let’s consider another example. Imagine this situation: You 

are in a class with just four other students, and the five of you 
took a 5-point pop quiz. Today your instructor is walking around 
the room, handing back the quizzes. She stops at your desk 
and hands you your paper. 
Written in bold black ink on the front is “3/5.” How do you 
react? Are you happy with your score of 3 or disappointed? 
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How do you decide? You might calculate your percentage 
correct, realize it is 60%, and be appalled. But it is more likely 
that when deciding how to react to your performance, you will 
want additional information. What additional information 
would you like? 
If you are like most students, you will immediately ask your 
neighbors, “Whad’ja get?” and then ask the instructor, “How 
did the class do?” In other words, the additional information 
you want is how your quiz score compares to other students’ 
scores. You therefore understand the importance of 
comparing your score to the class distribution of scores. 
Should your score of 3 turn out to be among the higher scores, 
then you’ll be pleased after all. On the other hand, if 3 is 
among the lower scores in the class, you won’t be quite so 
happy. 
This idea of comparing individual scores to a distribution of 
scores is fundamental to statistics. So let’s explore it further, 
using the same example (the pop quiz you took with your four 
classmates). Three possible outcomes are shown in Table 2. 
They are labeled “Dataset A,” “Dataset B,” and “Dataset C.” 
Which of the three datasets would make you happiest? In 
other words, in comparing your score with your fellow 
students’ scores, in which dataset would your score of 3 be the 
most impressive? 

In Dataset A, everyone’s score is 3. This puts your score at the 
exact center of the distribution. You can draw satisfaction from 
the fact that you did as well as everyone else. But of course, it 
cuts both ways: everyone else did just as well as you. 
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Student Dataset A Dataset B Dataset C 

You 3 3 3 

John’s 3 4 2 

Maria’s 3 4 2 

Shareecia’s 3 4 2 

Luther’s 3 5 1 

Table 2. Three possible datasets for the 5-point make-up quiz. 
Now consider the possibility that the scores are described as in 
Dataset B. This is a depressing outcome even though your 
score is no different than the one in Dataset A. The problem is 
that the other four students had higher grades, putting yours 
below the center of the distribution. 
Finally, let’s look at Dataset C. This is more like it! All of your 
classmates score lower than you so your score is above the 
center of the distribution. 

Now let’s change the example in order to develop more insight 
into the center of a distribution. For this example, there is a 
quasi-experiment with 2 groups (levels of the IV), tournament 
players and novices (people who don’t play chess). Subjects 
were shown a chess position and then asked to reconstruct 
it on an empty chessboard. The number of pieces correctly 
placed was recorded for three chess positions. The scores 
represent the total number of chess pieces correctly placed 
for the three chess positions (the DV). The maximum possible 
score was 89. Figure 2 shows the results of an experiment on 
memory for chess positions. This is a type of stem and leaf plot 
called a back-to-back stemplot. There are two groups being 
compared. On the left are people who don’t play chess (novice). 
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On the right are people who play a great deal (tournament 
players). It is clear that the location of the center of the 
distribution for the non-players is much lower than the center 
of the distribution for the tournament players. 

novice              tournament players 

Figure 2. Back-to-back stem and leaf display. The left side 
shows the memory scores of the non-players. The right side 
shows the scores of the tournament players. 
We’re sure you get the idea now about the center of a 
distribution. It is time to move beyond intuition. We need a 
formal definition of the center of a distribution. In fact, we’ll 
offer you three definitions! This is not just generosity on our 
part. 

There turn out to be (at least) three different ways of thinking 
about the center of a distribution, all of them useful in various 
contexts. In the remainder of this section, we will give statistical 
measures for these concepts of central tendency. These are the 
three measures of central tendency: 

• Mean 
• Median 
• Mode 

140  |  Chapter 4: Measures of Central Tendency



Mean 

One definition of central tendency is the point at which the 
distribution is in balance. Figure 3 shows the distribution of the 
five numbers 2, 3, 4, 9, 16 placed upon a balance scale. If each 
number weighs one pound, and is placed at its position along 
the number line, then it would be possible to balance them 
by placing a fulcrum at 6.8.  The fulcrum or balancing point is 
calculated as the arithmetic mean or mean. 

Figure 3. A balance scale demonstrating the mean as the 
fulcrum. 

The arithmetic mean is the most common 
measure of central tendency. The mean is essentially 
the balancing point of a distribution of scores. This 
means the distance to all scores below the mean 
equals the distance to all scores above the mean. The 
mathematical definition of the mean is the point in 
a distribution at which the total distance to all the 
scores above that point equals the total distance to 
all scores below that point. It is simply the sum of the 
numbers divided by the number of numbers. The 
symbol “μ” (pronounced “mew”) is used for the mean 
of a population. The symbol “̅X” (pronounced “X-
bar”) or M is used for the mean of a sample. 

Mean 
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The formula for μ (population) and ⯑̅ 
or M (sample): 

For the μ formula, ΣX is the sum of all 
the numbers in the population and N is 
the number of numbers in the 
population. The formula for ⯑̅ or M is 
essentially identical where ΣX is the 
sum of all the numbers in the sample 
and n is the number of numbers in the 
sample. 

The only distinction between these 
two equations is whether we are 
referring to the population (in which 
case we use the parameter μ) or a 
sample of that population (in which 
case we use the statistic ⯑̅). 

Example: The mean of the numbers 2,3,4,9,16 = 
34/5 = 6.8 (regardless if sample or population) 

Example: The mean for 1, 2, 3, 6, 8 is 20/5 = 4 

Table 3 shows the number of touchdown (TD) 
passes thrown by each of the 31 teams in the 
National Football League in the 2000 season. 
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37, 33, 33, 32, 29, 28,28, 23, 22, 22, 22, 21,21, 21, 20, 20, 
19, 19,18, 18, 18, 18, 16, 15,14, 14, 14, 12, 12, 9, 6 

Table 3. Number of touchdown passes. 

The mean number of touchdown passes thrown is 20.45 as 
shown below.  First, all X values were added up, then divided by 
the total number of teams. 
⯑ =∑ ⯑/⯑ = 634/31 = 20.45 

By the way, although the arithmetic mean is not the only 
“mean” (there is also a geometric mean, a harmonic mean, and 
many others that are all beyond the scope of this course), it is 
by far the most commonly used. Therefore, if the term “mean” 
is used without specifying whether it is the arithmetic mean, it 
is assumed to refer to the arithmetic mean. 

Median 

The median is also a frequently used measure of central 
tendency. The median is the midpoint of a distribution: the 
same number of scores is above the median as below it. Think 
of how a median is in the middle of the road (figure 4).  You can 
also consider the median as the 50th percentile. 

Chapter 4: Measures of Central Tendency  |  143



.
Figure 4. Road median of German Road 

The midpoint is the middle score ranging from lowest to 
highest values. In figure 5, the median is in the geometric 
middle as there is a similar distribution of higher and lower 
scores. In this case, the mean value and the median, middle 
point, value are the same. 

Figure 5. A distribution balanced on the tip of a triangle 
where the middle point, the median, is also the mean, the 
point of balance. 
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More on the Mean and Median 

The mean is the point on which a distribution would balance, 
the median is the value that minimizes the sum of absolute 
deviations, and the mean is the value that minimizes the sum 
of the squared deviations. Figure 6 shows the numbers 2, 3, 4, 
9, and 16. We calculated the mean as 6.8. The median would be 
the middle-value number.  From the 5 scores, the median is 4. 

Figure 6. The distribution balances at the mean of 6.8 and the 
median of 4.0. 

Median 

In order to calculate median: 

1. Arrange the numbers in the set from 
smallest to largest. 

2. Determine N or n (number of scores) 
3. If N or n is odd then the median is the 

middle number. 
4. If N or n is even then the median is the 

average of the middle two numbers 

For the data in Table 3 (an example earlier in the chapter with 
football scores), there are 31 scores. The 16th highest score 
(which equals 20) is the median because there are 15 scores 
below the 16th score and 15 scores above the 16th score. Again, 
the median can also be thought of as the 50th percentile. 
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When there is an odd number of numbers, the median is 
simply the middle number. For example, the median of 2, 4, 
and 7 (3 scores for N or n) is 4. When there is an even number 
of numbers, the median is the mean of the two middle 
numbers. Thus, the median of the numbers 2, 4, 7, 12 is:     4 + 7/
2= 11/2 = 5.5 

When there are numbers with the same values, each 
appearance of that value gets counted. For example, in the set 
of numbers 1, 3, 4, 4, 5, 8, and 9, the median is 4 because there 
are three numbers (1, 3, and 4) below it and three numbers 
(5, 8, and 9) above it. If we only counted 4 once, the median 
would incorrectly be calculated at 4.5 (4+5 divided by 2). When 
in doubt, writing out all of the numbers in order and marking 
them off one at a time from the top and bottom will always 
lead you to the correct answer. 

Mode 

The mode is the most frequently occurring value in the 
dataset. If there are multiple values “tied” for most frequently 
occurring, the data set can have more than one mode. If all the 
values occur at the same rate, then there is no mode. 

Mode 

In order to find the mode, create a frequency 
table.  Identify the score with the highest 
frequency.  It is the score and not the frequency 
value that is the mode. 

Example: 2,3,4,9,16 
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There is no mode as each score only has a 
frequency of 1. 

Example: 11, 12, 12, 13, 14 

score f 

11 1 

12 2 

13 1 

14 1 

The mode is 12. 

For the data in Table 3, the mode is 18 since more 
teams (4) had 18 touchdown passes than any other 
number of touchdown passes. With continuous data, 
such as response time measured to many decimals, 
the frequency of each value is one since no two scores 
will be exactly the same (see discussion of continuous 
variables). Therefore the mode of continuous data is 
normally computed from a grouped frequency 
distribution. Table 2 shows a grouped frequency 
distribution for the target response time data. Since 
the interval with the highest frequency is 600-700, 
the mode is the middle of that interval (650). Though 
the mode is not frequently used for continuous data, 
it is nevertheless an important measure of central 
tendency as it is the only measure we can use on 
qualitative or categorical data. 
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Range Frequency 

500-600 
600-700 
700-800 
800-900 
900-1000 
1000-1100 

3 
6 
5 
5 
0 
1 

Table 5. Grouped frequency distribution 

Recap 

All measures of central tendency reflect something about the 
middle of a distribution; but each of the three most common 
measures of central tendency represents a different concept: 

Mean: average, where μ is for the population and ⯑̅ or M is 
for the sample (both same equation). 

Median: middle or 50th percentile. If N or n is odd then the 
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median is the middle number. If N or n is even then the median 
is the average of the middle two numbers 

Mode: most common, or most frequent value, where there 
can be a tie or there can be no mode. 

Comparing Measures of Central Tendency 

A distribution is a graph that shows how scores are distributed 
along a measurement scale. The mean is the point on the x-axis 
that falls directly at the “balancing point” for the distribution. 
The median is the point on the x-axis at which half the area 
under the distribution curve lies below the median and half lies 
above the median. The mode is the point on the x-axis that falls 
directly below the tallest point on the distribution. 

In a perfectly symmetrical (normal) distribution, all three 
measures of central tendency are located at the same value. 
A distribution is symmetrical if a vertical line can be drawn at 
some point in the histogram such that the shape to the left and 
the right of the vertical line are mirror images of each other. In 
a perfectly symmetrical distribution, the mean and the median 
are the same. This example has one mode (unimodal), and the 
mode is the same as the mean and median.How do the various 
measures of central tendency compare with each other? In a 
symmetrical distribution that has two modes (bimodal), the 
two modes would be different from the mean and median. 

A skewed distribution has one side that is long and spread 
out, somewhat like a tail. The side with the fewer scores (the 
side that looks more like a tail) is considered the direction of 
the skew. A distribution that is skewed to the right is called 
a positive skewed. A distribution skewed to the left is called a 
negative skew. 
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Figure 7. Distributions with mean, median and mode 

Differences among the measures occur with skewed 
distributions. Figure 8 shows the distribution of 642 scores on 
an introductory psychology test. Notice this distribution has a 
slight positive skew. 

Figure 8. A distribution with a positive skew. 
Measures of central tendency are shown in Table 6. 

Notice they do not differ greatly, with the exception 
that the mode is considerably lower than the other 
measures. When distributions have a positive skew, 
the mean is typically higher than the median, 
although it may not be in bimodal distributions. For 
these data, the mean of 91.58 is higher than the 
median of 90. This pattern holds true for any skew: 
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the mode will remain at the highest point in the 
distribution, the median will be pulled slightly out 
into the skewed tail (the longer end of the 
distribution), and the mean will be pulled the 
farthest out. Thus, the mean is more sensitive to 
skew than the median or mode, and in cases of 
extreme skew, the mean may no longer be 
appropriate to use. 

Measure Value 

Mode 
Median 
Mean 

84 

90 
91.58 

Table 6. Measures of central tendency for the test scores. 
The distribution of baseball salaries (in 1994) 

shown in Figure 9 has a much more pronounced 
skew than the distribution in Figure 8. 

Figure 9. A distribution with a very large positive skew. This 
histogram shows the salaries of major league baseball players 
(in thousands of dollars). 

Table 7 shows the measures of central tendency for these data. 
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The large skew results in very different values for these 
measures. No single measure of central tendency is sufficient 
for data such as these. If you were asked the very general 
question: “So, what do baseball players make?” and answered 
with the mean of $1,183,000, you would not have told the whole 
story since only about one-third of baseball players make that 
much. If you answered with the mode of $250,000 or the 
median of $500,000, you would not be giving any indication 
that some players make many millions of dollars. Fortunately, 
there is no need to summarize a distribution with a single 
number. When the various measures differ, our opinion is that 
you should report the mean and median. Sometimes it is worth 
reporting the mode as well. In the media, the median is usually 
reported to summarize the center of skewed distributions. You 
will hear about median salaries and median prices of houses 
sold, etc. This is better than reporting only the mean, but it 
would be informative to hear more statistics. 

Measure Value (in thousands) 

Mode 
Median 
Mean 

250 
500 
1,183 

Table 7. Central tendency measures for baseball salary data. 

Summary 

Remember that measures of central tendency summarize and 
organize large sets of data that allow researchers to 
communicate information with just a few numbers. There are 
three main considerations when determining which measure 
of central tendency to use: 
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Type Appropriate Not Appropriate 

Mean Interval/Ratio 

Extreme scores Skewed 
distribution Ordinal 

Nominal 

Median Extreme scores Skewed 
distribution Ordinal Nominal 

Mode 
Nominal Discrete 

Describe shape – bimodal 
Interval/Ratio 

Before deciding to report a mean, median or mode ask yourself 
what the data are trying to convey, what is the shape of the 
distribution (e.g., normal or skewed) and the level of 
measurement for the data. 

The level of measurement of a particular variable will 
determine which measure(s) of central tendency can be used. 
For example: 

• Mean is preferred  when using ratio level data unless 
distribution includes outliers 

• Median is the preferred when using ordinal data 
• Median is preferred when data include outliers 
• Mode is preferred when using nominal data 

The goal of descriptive statistics is to summarize and organize 
large amounts of data and measures of central tendency tell 
us about the middle of a distribution but we need to select the 
measure that is most representative of the distribution. 

Generally, if the distribution of data is skewed to the left, 
the mean is less than the median, which is often less than 
the mode. If the distribution of data is skewed to the right, 
the mode is often less than the median, which is less than 
the mean. The mean will inaccurately describe a skewed (non-
symmetrical) distribution. You have seen this happen if you’ve 
ever received one very low grade in a class after receiving many 
high grades; your average drops like a rock. The one low grade 
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produces a negatively skewed distribution, and the mean gets 
pulled away from where most of your grades are, toward that 
low grade. What hurts is then telling someone your average 
because it’s misleading. It gives the impression that all of your 
grades are relatively low, even though you have only that one F. 

Learning Objectives 
Having read this chapter, you should be able to: 

• explain the purpose of measuring central tendency 
• define and compute the three measures of central 

tendency (mean, median, mode) 
• list the circumstances where each of the three measures 

of central tendency are appropriate 
• explain how the three measures of central tendency are 

related to distribution (positive skew, negative skew, 
normal) 

Exercises – Ch. 4 

1. If the mean time to respond to a stimulus is much higher 
than the median time to respond, what can you say about 
the shape of the distribution of response times? 

2. Compare the mean, median, and mode in terms of their 
sensitivity to extreme scores. 

3. Your younger brother comes home one day after taking a 
science test. He says that some- one at school told him 
that “60% of the students in the class scored above the 
median test grade.” What is wrong with this statement? 
What if he had said “60% of the students scored above the 
mean?” 

4. Make up three data sets with 5 numbers each that have: 

1. the same mean but different standard deviations. 
2. the same mean but different medians. 
3. the same median but different means. 
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4. Compute the population mean for the following 
scores: 5, 7, 8, 3, 4, 4, 2, 7, 1, 6 

5. Compute the sample mean for the following scores: -8, -4, 
-7, -6, -8, -5, -7, -9, -2, 0 

6. For the following problem, use the following scores: 5, 8, 8, 
8, 7, 8, 9, 12, 8, 9, 8, 10, 7, 9, 7, 6, 9, 10, 11, 8 

1. Create a histogram of these data. What is the shape of 
this histogram? 

2. How do you think the three measures of central 
tendency will compare to each other in this dataset? 

3. Compute the sample mean, the median, and the 
mode 

4. Draw and label lines on your histogram for each of the 
above values. Do your results match your predictions? 

Answers to Odd-Numbered Exercises – Ch. 
4 

1. If the mean is higher, that means it is farther out into the 
right-hand tail of the distribution. Therefore, we know this 
distribution is positively skewed. Review Figure 7. 

3. The median is defined as the value with 50% of scores 
above it and 50% of scores below it; therefore, 60% of score 
cannot fall above the median. If 60% of scores fall above the 
mean, that would indicate that the mean has been pulled 
down below the value of the median, which means that the 
distribution is negatively skewed 

5. μ = 4.80 
7. M = -6.6 
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5.  Chapter 5: Measures 
of Dispersion 

Measure of central tendency (a value around which other 
scores in the set cluster) and a measure of variability (an 
indicator of how spread out about the mean scores are in a 
data set) are used together to give a description of the data. 

The terms variability, spread, and dispersion are synonyms, 
and refer to how spread out a distribution is. Just as in the 
section on central tendency where we discussed measures of 
the center of a distribution of scores, in this chapter we will 
discuss measures of the variability of a distribution. 

Measures of dispersion describe the spread of scores in a 
distribution. The more spread out the scores are, the higher 
the dispersion or spread. In Figure 1, the y-axis is frequency 
and the x-axis represents values for a variable.  There are two 
distributions, labeled as small and large.  You can see both are 
normally distributed (unimodal, symmetrical), and the mean, 
median, and mode for both fall on the same point.  What is 
different between the two is the spread or dispersion of the 
scores.  The taller-looking distribution shows a smaller 
dispersion while the wider distribution shows a larger 
dispersion.  For the “small” distribution in Figure 1, the data 
values are concentrated closely near the mean; in the “large” 
distribution, the data values are more widely spread out from 
the mean. 
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Figure 1. Examples of 2 normal (symmetrical, unimodal) 
distributions. 

In this chapter, we will look at three measures of variability: 
range, variance, and standard deviation. An important 
characteristic of any set of data is the variation in the data. 
Imagine that students in two different sections of statistics 
take Exam 1 and the mean score in both classrooms is a 75. If 
that is the only descriptive statistic I report you might assume 
that both classes are identical – but that is not necessarily true. 
Let’s examine the scores for each section. 

Section A Section B 

Scores = 70, 70, 70, 70, 85, 85 

Mean = 75 

Scores = 70, 72, 73, 75, 75, 85 

Mean = 75 

Table 1. Exam scores for 2 sections of a class. 
Comparing both sections you can see that the scores for 

Section A very few scores are represented (e.g., 70 and 85) and 
they are very far from the mean, while in Section B more scores 
are represented and clustered close to the mean We would say 
that the spread of scores for Section A is greater than Section 
B. 
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Range 

The range is the simplest measure of variability and is really 
easy to calculate. 

Range:  We calculate it by subtracting the 
smallest score from the largest score in the data set. 

You can see in our statistics course example (Table 1) that 
Section A scores have a range of 15 and Section B scores have 
a range of 15. That means all the other scores are not included 
and may not give an unbiased description of the data. 

The range is the simplest measure of variability to calculate, 
and one you have probably encountered many times in your 
life. The simplicity of calculating range is appealing but it can 
be a very unreliable measure of variability. We noticed earlier 
that the spread of score for each section was very different for 
each section. 

Let’s take a few examples. What is the range of the following 
group of numbers: 10, 2, 5, 6, 7, 3, 4? Well, the highest number 
is 10, and the lowest number is 2, so 10 – 2 = 8. The range is 8. 
Let’s take another example. Here’s a dataset with 10 numbers: 
99, 45, 23, 67, 45, 91, 82, 78, 62, 51. What is the range? The highest 
number is 99 and the lowest number is 23, so 99 – 23 equals 76; 
the range is 76. Again, the problem with using range is that it is 
extremely sensitive to outliers, and one number far away from 
the rest of the data will greatly alter the value of the range. For 
example, in the set of numbers 1, 3, 4, 4, 5, 8, and 9, the range 
is 8 (9 – 1). However, if we add a single person whose score is 
nowhere close to the rest of the scores, say, 20, the range more 
than doubles from 8 to 19. 

Interquartile Range 
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A special take on range, is to identify values in terms of 
quartiles of the distribution (remember chapter 2 with 
boxplots). The interquartile range (IQR) is the range of the 
middle 50% of the scores in a distribution and is sometimes 
used to communicate where the bulk of the data in the 
distribution are located. It is computed as follows: IQR = 75th 
percentile – 25th percentile. Recall that in the discussion of box 
plots in chapter 2, the 75th percentile was called the upper 
hinge and the 25th percentile was called the lower hinge. Using 
this terminology, the interquartile range is referred to as the H-
spread. 

The Mean Needed to Further Examine 
Dispersion 

Variability can also be defined in terms of how close the scores 
in the distribution are to the middle of the distribution. Using 
the mean as the measure of the center of the distribution, we 
can see how far, on average, each data point is from the center. 
Remember that the mean is the point on which a distribution 
would balance. We can examine spread by identifying how far 
each value is from the mean. This is known as the deviation 
from the mean (or differences from the mean). The sum of 
deviations is the smallest for the mean value. Interestingly, the 
sum of deviation from the mean is zero because the mean is 
the fulcrum or balance point. 

Let’s revisit an example from chapter 4 (Figure 2).  We had a 
set of 5 numbers: 2, 3, 4, 9, and 16 with a mean of 6.8. 

Figure 2. The distribution balances at the mean of 6.8. 
In Table 2, the value is represented as X, the column 
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“deviation from the mean or ⯑ − mean” contains deviations 
(how far each score deviates from the mean), here calculated 
as the score minus 6.8. 

Value (X) Deviation from the Mean (X – mean) 

2 -4.8 

3 -3.8 

4 -2.8 

9  2.2 

16  9.2 

Total (Σ )    0 

Table 2 (from chapter 4) shows the deviations of the numbers 
2, 3, 4, 9, and 16 from their mean of 6.8. 

Moving toward variance: sum of squares 
deviations 

For us to get to a value that would represent the dispersion, 
we will add another step from calculating the deviation of the 
mean scores.  You can see in Table 3 there is now a third 
column, the squared deviations column.  The column “(⯑ − 
mean)2” has the “Squared Deviations” and is simply the 
previous column squared. 
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Value (X) Deviation from the Mean (X – 
mean) Squared Deviations (X

2 -4.8 23.04 

3 -3.8 14.44 

4 -2.8 7.84 

9 2.2 4.84 

16 9.2 84.64 

Total (Σ ) 0 134.8 (←Sum of Squar

Table 3. Adding on a squared deviations column to 
create “sum of squares” or SS 

There are a few things to note about how Table 4 is formatted, 
as this is the format you will use to calculate variance (and, 
soon, standard deviation). The raw data scores (X) are always 
placed in the left-most column. This column is then summed 
at the bottom to facilitate calculating the mean (simply 
divided this number by the number of scores in the table). 
Remember that mean can be μ (population) or if a sample, M 
or ̅X. Once you have the mean, you can easily work your way 
down the middle column calculating the deviation scores. This 
column is also summed and has a very important property: it 
will always sum to 0 (or close to zero if you have rounding error 
due to many decimal places). This step is used as a check on 
your math to make sure you haven’t made a mistake. If this 
column sums to 0, you can move on to filling in the third 
column of squared deviations. This column is summed as well 
and has its own name: the Sum of Squares (abbreviated as SS 
and given the formula ∑(X−mean)2). As we will see, the Sum of 
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Squares appears again and again in different formulas – it is a 
very important value, and this table makes it simple to 
calculate without error. 

Here is another example of calculating SS with 20 data points 
where the mean = 7: 
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X X − mean (X − mean)2 

9 2 4 

9 2 4 

9 2 4 

8 1 1 

8 1 1 

8 1 1 

8 1 1 

7 0 0 

7 0 0 

7 0 0 

7 0 0 

7 0 0 

6 -1 1 

6 -1 1 

6 -1 1 

6 -1 1 

6 -1 1 

6 -1 1 
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5 -1 4 

5 -1 4 

total 
(Σ ) Σ = 0 Σ = 30 

Table 4. Calculations for Sum of Squares. 

Variance 

Now that we have the Sum of Squares calculated, we can use 
it to compute our formal measure of average distance from 
the mean, the variance. Informally, it measures how far a set 
of (random) numbers are spread out from their average value. 
The variance is defined as the average squared difference of 
the scores from the mean. The mathematical definition of the 
variance is the sum of the squared deviations (distances) of 
each score from the mean divided by the number of scores in 
the data set. Remember that we square the deviation scores 
because, as we saw in the Sum of Squares table, the sum of 
raw deviations is always 0, and there’s nothing we can do 
mathematically without changing that. 

Variance 

The population parameter for variance is σ2 

(“sigma-squared”) and is calculated as: 
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Example from Table 3: If we assume that the 
values in Table 3 represent the full population, then 
we can take our value of Sum of Squares and divide 
it by N to get our population variance: 

σ2 = 134.8/5 = 26.96 

Example from Table 4: If we assume that the 
values in Table 4 represent the full population, then 
we can take our value of Sum of Squares and divide 
it by N to get our population variance: 

σ2 = 30/20 = 1.5 

Notice that the numerator that formula is identical to the 
formula for Sum of Squares presented in Tables 3 and 4 with 
mean replaced by μ. Thus, we can use the Sum of Squares table 
to easily calculate the numerator then simply divide that value 
by N to get variance.  Remember variance for a population 
is noted as σ2 (sigma-squared).So, on average, scores in this 
population from our quiz example in Table 4 are 1.5 squared 
units away from the mean. Variance as a measure of spread 
is much more robust (a term used by statisticians to mean 
resilient or resistant to outliers) than the range, so it is a much 
more useful value to compute. Additionally, as we will see in 
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future chapters, variance plays a central role in inferential 
statistics. 
The variance formula for a sample is very similar to the formula 
for the population variance with a few changes as shown 
below. First, for mean we use M or ̅X, and most importantly, 
we now divide by n – 1 instead of N. The value n – 1 has a 
special name: the degrees of freedom (abbreviated as df). You 
don’t need to understand in depth what degrees of freedom 
are (essentially they account for the fact that we have to use a 
sample statistic to estimate the mean (̅X or M) before we 
estimate the variance) in order to calculate variance, but 
knowing that the denominator is called df provides a nice 
shorthand for the variance formula: SS/df. Variance is also 

known as s2 for a sample. 

Variance 

The sample statistic used to estimate the variance 
is s2 (“s-squared”): 
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Note: the sum of square deviations is abbreviated 
at SS and the degrees of freedom abbreviated as df. 
The shorthand for sample variance is SS/df. 

Example from Table 3: If we assume that the 
values in Table 4 represent a sample, then we can 
take our value of Sum of Squares and divide it by n-1 
to get our sample variance: 

s2 = 134.8/(5-1) = 33.7 

Example from Table 4 (treating those scores as a 
sample): we can estimate the sample variance as: 

s2 =30/(20 − 1) = 1.58 

Notice that the sample variance values are slightly larger than 
the one we calculated when we assumed these scores were 
the full population. This is because our value in the 
denominator is slightly smaller, making the final value larger. 
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In general, as your sample size n gets bigger, the effect of 
subtracting 1 becomes less and less. 
Comparing a sample size of 10 to a sample size of 1000; 10 – 1 = 
9, or 90% of the original value, whereas 1000 – 1 = 999, or 99.9% 
of the original value. Thus, larger sample sizes will bring the 
estimate of the sample variance closer to that of the 
population variance. This is a key idea and principle in statistics 
that we will see over and over again: larger sample sizes better 
reflect the population.The variance is “the sum of the squared 
distances of each score from the mean divided by total 
scores,” according to the definitional formula. This means the 
final answer is always in the original units of measurement, 
squared. This means that if we had been measuring reaction 
time, the units would have been seconds squared. If we had 
been measuring height, the units would have been inches 
squared. These units are not very useful because we do not 
talk about inches squared in day to day language. 

Standard Deviation 

The standard deviation is simply the square root of the 
variance. This is a useful and interpretable statistic because 
taking the square root of the variance (recalling that variance 
is the average squared difference) puts the standard deviation 
back into the original units of the measure we used. Thus, 
when reporting descriptive statistics in a study, scientists 
virtually always report mean and standard deviation. Standard 
deviation is therefore the most commonly used measure of 
spread for our purposes. 
The population parameter for standard deviation is σ (“sigma”), 
which, intuitively, is the square root of the variance parameter 
σ2 (on occasion, the symbols work out nicely that way). The 
formula is simply the formula for variance under a square root 
sign. 
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Standard Deviation 

population standard deviation is given 
as σ : 

Example from Table 3 (data represent the full 
population): 

σ = √(134.8/5) = √26.96 = 5.19 

Example from table 4 (data represent the full 
population): 

σ = √(30/20) = √1.5 = 1.22 

The sample statistic follows the same conventions and is 
given as s.  It is the square root of the sample variance. 

Standard Deviation 

sample standard deviation is given as s: 
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It can be noted shorthand as s = SS/df 

Example from Table 3 (treat as sample): 

s2 = 134.8/(5-1) = 33.7 

Example from Table 4 (treating those scores as a 
sample): 

s2 =30/(20 − 1) = 1.58 

The Normal Distribution and Standard Deviation 

The standard deviation is an especially useful 
measure of variability when the distribution is normal 
or approximately normal because the proportion of 
the distribution within a given number of standard 
deviations from the mean can be calculated. 

For a normal distribution, 

• Approximately 68% of the data is within one standard 
deviation of the mean. 

• Approximately 95% of the data is within two standard 
deviations of the mean. 
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Image 
shows 
normal 
distribution 
with the 
68-95-99 
rule 

• More than 99% of the data is within three standard 
deviations of the mean. 

This is known as the Empirical Rule or the 68-95-99 Rule, as 
shown in Figure 3. 

Figure 3: Percentages of the normal distribution showing the 
68-95-99 rule. 

For example, if you had a normal distribution with a mean of 
50 and a standard deviation of 10, then 68% of the distribution 
would be between 50 – 10 = 40 and 50 +10 =60. Similarly, about 
95% of the distribution would be between 50 – 2 x 10 = 30 and 
50 + 2 x 10 = 70. 
Figure 4 shows two normal distributions. The red distribution 
has a mean of 40 and a standard deviation of 5; the blue 
distribution has a mean of 60 and a standard deviation of 10. 
For the red distribution, 68% of the distribution is between 45 
and 55; for the blue distribution, 68% is between 50 and 70. 
Notice that as the standard deviation gets smaller, the 
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two 
distribution
s, one is tall 
and skinny 
and the 
other is 
more 
similar to 
normal 
distribution 

distribution becomes much narrower, regardless of where the 
center of the distribution (mean) is. Figure 5 presents several 
more examples of this effect. 

Figure 4. Normal distributions with standard deviations of 5 
and 10. 
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Figure 5. Differences between two datasets. 
The image below represents IQ scores as measured by the 

Wechsler Intelligence test and has a µ = 100 and σ = 15. This 
means that about 70% of the scores are between 85 and 115 and 
that 95% of the scores are between 70 and 130. 

Figure 6. Weshcler IQ Score distribution. Photo credit 
A data value that is two standard deviations from the average 

is just on the borderline for what many statisticians would 
consider to be far from the average, and can define outside two 
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standard deviations as an outlier (extreme score). Considering 
data to be far from the mean if it is more of an approximate 
“rule of thumb” than a rigid rule. Some researchers may define 
an outlier as greater than 3 standard deviations from the mean. 
In general, the shape of the distribution of the data affects how 
much of the data is further away than two standard deviations. 

Example 

Let’s use an example to help us understand how we 
can use standard deviation. Suppose that we are 
studying the amount of time customers wait in line at 
the checkout at supermarket A and supermarket B. 

The average wait time at both supermarkets is five 
minutes. At supermarket A, the standard deviation for 
the wait time is two minutes. At supermarket B the 
standard deviation for the wait time is four minutes 

Because supermarket B has a higher standard 
deviation, we know that there is more variation in the 
wait times at supermarket B. Overall, wait times at 
supermarket B are more spread out from the average; 
wait times at supermarket A are more concentrated 
near the average. 

Suppose that Rosa and Binh both shop at 
supermarket A. Rosa waits at the checkout counter for 
seven minutes and Binh waits for one minute. Rosa 
waits for seven minutes – Seven is two minutes longer 
than the average of five; two. Binh waits for one minute 
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– One is four minutes less than the average of five; four 
minutes is equal to two standard deviations. 

A data value that is two standard deviations from the 
average is just on the borderline for what many 
statisticians would consider to be an outlier. Again, we 
would also want to do more about the distributions for 
this data. 

 

Recap 

Formula for Sum of Squares 
for population (using μ) Symbol Meaning 

X Raw score 

X – µ 
Deviation score that is 
calculated by subtracting raw 
scores from population mean 

(X – µ )² The deviation scores are 
squared 

∑(X – µ 
)² 

The squared deviation scores 
are added up to calculate 
sum of squares 

The formula for variance expresses the mathematical 
definition in symbols. Recall that the symbol for the variance 
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(like any statistic) changes depending on whether the statistic 
is referring to a sample or a population. Although the variance 
is itself a measure of variability, it generally plays a larger role in 
inferential statistics than in descriptive statistics. 

Formulas 

Sample variance (s2) Population variance (σ2) 

SS/df 
Note: sample df = n-1 

SS/N 
 

The standard deviation is the most commonly used measure 
of variability because it includes all the scores of the data set 
in the calculation, and it is reported in the original units of 
measurement. It tells us the average (or standard) distance of 
each score from the mean of the distribution. 

Sample Standard Deviation (s) Population Standard Deviation (σ) 

√SS/df √SS/N 

The standard deviation is always positive or zero. The standard 
deviation is small when the data are all concentrated close to 
the mean, exhibiting little variation or spread. The standard 
deviation is larger when the data values are more spread out 
from the mean, exhibiting more variation. 

It is important to note that the Empirical Rule or the 68-95-99 
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rule only applies when the shape of the distribution of the data 
is bell-shaped and symmetric. 

Factors Affecting Variability 

Before we close out the chapter, we wanted to make you aware 
that there are several things that can impact the spread of 
scores. 

Extreme Scores. Range is affected most by extreme scores or 
outliers but standard deviation and variance are also affected 
by extremes because they are based on squared deviations. 
One extreme score can have a disproportionate effect on the 
overall statistic or parameter. 

Sample size. Increased sample size is associated with an 
increase in range because of the potential to increase or 
decrease values in a set of data. 

Stability under sampling. If you take multiple samples from 
the same population you expect similar values because the 
samples come from the same source. This accounts for their 
stability and we would expect samples to have the same 
variability as the population from which it was selected. 

Learning Objectives 

Having read this chapter, you should be able to: 

• Explain the purpose of measuring variability and 
differences between scores with high versus low variability 

• Define and calculate measures of spread/dispersion: 
range, variance, standard deviation for sample and for 
population 

• Define and calculate sum of squared deviations (SS) 
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Exercises – Ch. 5 

1. Compute the population standard deviation for the following 
scores (remember to use the Sum of Squares table and this is 
the same data from chapter 4): 

5, 7, 8, 3, 4, 4, 2, 7, 1, 6 
2. For the following problem, use the following scores: 5, 8, 8, 

8, 7, 8, 9, 12, 8, 9, 8, 10, 7, 9, 7, 6, 9, 10, 11, 8 
3. Compute the range, sample variance, and sample standard 

deviation for the following scores: 25, 36, 41, 28, 29, 32, 39, 37, 34, 
34, 37, 35, 30, 36, 31, 31 (same data from chapter 4) 

4. Using the same values from problem 3, calculate the 
range, sample variance, and sample standard deviation, but 
this time include 65 in the list of values. How did each of the 
three values change? 

5. Two normal distributions have exactly the same mean, but 
one has a standard deviation of 20 and the other has a 
standard deviation of 10. How would the shapes of the two 
distributions compare? 

6. Compute the sample standard deviation for the following 
scores: -8, -4, -7, -6, -8, -5, -7, -9, -2, 0 (same data from chapter 4) 

Answers to Odd-Numbered Exercises – Ch. 
5 

1. (μ = 4.80) σ2 = 2.36 
3. range = 16, s2 = 18.40, s = 4.29 
5. If both distributions are normal, then they are both 

symmetrical, and having the same mean causes them to 
overlap with one another. The distribution with the standard 
deviation of 10 will be narrower than the other distribution 
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6.  Chapter 6: z-scores 
and the Standard 
Normal Distribution 

We now understand how to describe and present our data 
visually and numerically. These simple tools, and the principles 
behind them, will help you interpret information presented to 
you and understand the basics of a variable. Moving forward, 
we now turn our attention to how scores within a distribution 
are related to one another, how to precisely describe a score’s 
location within the distribution, and how to compare scores 
from different distributions. 

Revisiting Percentiles 

In many situations, it is useful to have a way to describe the 
location of an individual score within its distribution. One 
approach is the percentile rank. The percentile rank of a score is 
the percentage of scores in the distribution that are lower than 
that score. Percentiles are useful for comparing values. 

Consider, for example, the distribution of Rosenberg Self-
esteem scores we used in chapter 2. For any score in the 
distribution, we can find its percentile rank by counting the 
number of scores in the distribution that are lower than that 
score and converting that number to a percentage of the total 
number of scores. 
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Self-Esteem 
Scores Frequency Cumulative 

Frequency 
Cumulative 
Percentage 

24 3 40 100 

23 5 37 92.5 

22 10 32 80 

21 8 22 55 

20 5 14 35 

19 3 9 22.5 

18 3 6 15 

17 0 3 7.5 

16 2 3 7.5 

15 1 1 2.5 

Table 1. Frequency table for Rosenburg self-esteem scores 
Notice, for example, that five of the students represented 

by the data in the table had self-esteem scores of 23. In this 
distribution, 32 of the 40 scores (80%) are lower than 23 (note 
that you can see for score 22 showing cumulative frequency as 
32). Thus, for students with a score of 23, they have a percentile 
rank of 80 percent. It can also be said that they scored at the 
80th percentile. Remember that percentile rank by counting 
the number of scores in the distribution that are lower than 
that score and converting that number to a percentage of the 
total number of scores (32/40 = 80%). Percentile ranks are often 
used to report the results of standardized tests of ability or 
achievement. If your percentile rank on a test of verbal ability 
were 40, for example, this would mean that you scored higher 
than 40% of the people who took the test. 

Normal Distributions 

The normal distribution is the most important and most widely 
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used distribution in statistics. It is sometimes called the “bell 
curve,” although the tonal qualities of such a bell would be less 
than pleasing. It is also called the “Gaussian curve” of Gaussian 
distribution after the mathematician Carl Friedrich Gauss. Let’s 
review a little bit about the normal distribution. The normal 
distribution is described in terms of two parameters: the mean 
(which you can think of as the location of the peak), and the 
standard distribution (which specifies the width of the 
distribution). The bell-like shape of the distribution never 
changes, only its location and width. The normal distribution is 
commonly observed in data collected in the real world, as we 
have already seen in Chapter 3 — and in chapter 7 we will learn 
more about why this occurs. 

Photo of Gauss Monument dedicated to the mathematician, 
geodesist and astronomer Carl Friedrich Gauß. It is placed in 
his place of birth Brunswick. Photo credit 

Strictly speaking, it is not correct to talk about “the normal 
distribution” since there are many normal distributions. Normal 
distributions can differ in their means and in their standard 
deviations. Figure 1 shows three normal distributions. The 
green (left-most) distribution has a mean of -3 and a standard 
deviation of 0.5, the distribution in red (the middle distribution) 
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has a mean of 0 and a standard deviation of 1, and the 
distribution in black (right-most) has a mean of 2 and a 
standard deviation of 3. These as well as all other normal 
distributions are symmetric with relatively more values at the 
center of the distribution and relatively few in the tails. What 
is consistent about all normal distribution is the shape and 
the proportion of scores within a given distance along the x-
axis. We will focus on the Standard Normal Distribution (also 
known as the Unit Normal Distribution), which has a mean of 0 
and a standard deviation of 1 (i.e. the red distribution in Figure 
1). 

Figure 1. Normal distributions differing in mean and standard 
deviation. 

Seven features of normal distributions are listed below. 

• Normal distributions are symmetric around their mean. 
• The mean, median, and mode of a normal distribution are 

equal. 
• The area under the normal curve is equal to 1.0. 
• Normal distributions are denser in the center and less 

dense in the tails. 
• Normal distributions are defined by two parameters, the 

mean (μ) and the standard deviation (σ). 
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• 68% of the area of a normal distribution is within one 
standard deviation of the mean. 

• Approximately 95% of the area of a normal distribution is 
within two standard deviations of the mean. 

These properties enable us to use the normal distribution to 
understand how scores relate to one another within and across 
a distribution. But first, we need to learn how to calculate the 
standardized score than make up a standard normal 
distribution. 

z-scores 

As we learned in earlier lessons, population mean (µ) and 
population standard deviation (σ) are methods for describing 
an entire distribution of scores using individual scores. If the 
data sets have different means and standard deviations, then 
comparing the data values directly can be misleading. A z-
score is a standardized version of a raw score (x) that gives 
information about the relative location of that score within its 
distribution. Z-scores are standardized scores that identify and 
describe the exact location of every score within a distribution. 
By transforming our values (raw score) we can compare z-
scores across different samples or groups and make 
meaningful comparisons. Each value in the distribution has a 
z-score that can be calculated to standardize for comparison. 

Let’s say that you received a score of 76 on your Chemistry 
exam and your friend receives a score of 76 on her Physics 
exam. Who is doing better in class? It is hard to say because we 
do not have enough information. This is an example of how z-
scores can facilitate meaningful comparisons.The z score for a 
particular individual is the difference between that individual’s 
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score and the mean of the distribution, divided by the standard 
deviation of the distribution. 

Formulas to calculate Z scores 
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Note that it is essentially the same formula where 
the appropriate symbols for mean and standard 
deviation have been used depending on if working 
with population or sample data. 

As you can see, z-scores combine information about where 
the distribution is located (the mean/center) with how wide 
the distribution is (the standard deviation/spread) to interpret 
a raw score (x). Specifically, z-scores will tell us how far the 
score is away from the mean in units of standard deviations 
and in what direction. Z-scores transforms raw scores into units 
of standard deviation above or below the mean. This 
transformation provides a reference using the standard normal 
distribution. If we are given a Z score we know where, relative 
to the mean, the Z score and raw score lies. 
The value of a z-score has two parts: the sign (positive or 
negative) and the magnitude (the actual number). The sign 
of the z-score tells you in which half of the distribution the z-
score falls: a positive sign (or no sign) indicates that the score is 
above the mean and on the right hand-side or upper end of 
the distribution, and a negative sign tells you the score is 
below the mean and on the left-hand side or lower end of the 
distribution. The magnitude of the number tells you, in units of 
standard deviations, how far away the score is from the center 
or mean. The magnitude can take on any value between 
negative and positive infinity, but for reasons we will see soon, 
they generally fall between -3 and 3. 
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Z-scores & the standard normal distribution 

Z-score distribution 

• If the Z score is negative, then the score falls 
below the mean 

• If the Z score is 0, then the score falls at the 
mean 

• If the Z score is positive, then the score falls 
above the mean 

Let’s look at some examples. A z-score value of -1.0 tells us that 
this z-score is 1 standard deviation (because of the magnitude 
1.0) below (because of the negative sign) the mean. 

Figure 2. z-score of -1 
Similarly, a z-score value of 1.0 tells us that this z-score is 1 
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standard deviation above the mean. Thus, these two scores 
are the same distance away from the mean but in opposite 
directions. A z-score of -2.5 is two-and-a-half standard 
deviations below the mean and is therefore farther from the 
center than both of the previous scores, and a z-score of 0.25 is 
closer than all of the ones before. 

We can convert raw scores into z-scores to get a better idea 
of where in the distribution those scores fall. Let’s say we get 
a score of 68 on an exam (X=68). We may be disappointed to 
have scored so low, but perhaps it was just a very hard exam. 
Having information about the distribution of all scores in the 
class would be helpful to put some perspective on ours. We 
find out that the class got an average score (M) of 54 with 
a standard deviation (s) of 8. To find out our relative location 
within this distribution, we simply convert our test score into a 
z-score. 

z =(⯑ − M)/s = (68 − 54)/8= 1.75 
We find that we are 1.75 standard deviations above the 
average, above our rough cut off for close and far. Suddenly 
our 68 is looking pretty good! 
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Figure 3. Raw and standardized versions of a single score 
Figure 3 shows both the raw score and the z-score on their 

respective distributions. Notice that the red line indicating 
where each score lies is in the same relative spot for both. 
This is because transforming a raw score into a z-score does 
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not change its relative location, it only makes it easier to know 
precisely where it is. 

Example comparing raw scores 

Let’s go back to our Chemistry and Physics exam 
score comparisons. Each student received a score of x 
=76 on the exam. Assume that: 

• The average score for both exams is M = 70. 
• The standard deviation for Chemistry is s = 3 
• The standard deviation for Physics is s = 12. 

A z score indicates how far above or below the mean 
a raw score is, but it expresses this in terms of the 
standard deviation. The z-scores for our example are 
above the mean. 

• Chemistry z-score is z = (76-70)/3 = +2.00 
• Physics z -score is z = (76-70)/12 = + 0.50 

When we compare the position of the test score X = 
76 it is clear that these two distributions are very 
different and that the Chemistry score has a higher 
position in the distribution. 
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As mentioned earlier, z-scores are also useful for comparing 
scores from different distributions. Let’s say we take the SAT 
and score 501 on both the math and critical reading sections. 
Does that mean we did equally well on both? Scores on the 
math portion are distributed normally with a mean of 511 and 
standard deviation of 120, so our z- score on the math section 
is zmath= 501 − 511/120= −0.08 which is just slightly below 
average (note that use of “math” as a subscript; subscripts are 
used when presenting multiple versions of the same statistic 
in order to know which one is which and have no bearing on 
the actual calculation). The critical reading section has a mean 
of 495 and standard deviation of 116, so zcreading = 501 − 495/
116= 0.05. So even though we were almost exactly average on 
both tests, we did a little bit better on the critical reading 
portion relative to other people. 

Finally, z-scores are incredibly useful if we need to combine 
information from different measures that are on different 
scales. Let’s say we give a set of employees a series of tests 
on things like job knowledge, personality, and leadership. We 
may want to combine these into a single score we can use to 
rate employees for development or promotion, but look what 
happens when we take the average of raw scores from 
different scales, as shown in Table 2: 

Raw 
Scores 

Job 
Knowledge 

(0 – 100) 

Personality 
(1 –5) 

Leadership 
(1 – 5) Average 

Employee 
1 98 4.2 1.1 34.43 

Employee 
2 96 3.1 4.5 34.53 

Employee 
3 97 2.9 3.6 34.50 
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Table 2. Raw test scores on different scales (ranges in 
parentheses). 

Because the job knowledge scores were so big and the scores 
were so similar, they overpowered the other scores and 
removed almost all variability in the average. However, if we 
standardize these scores into z-scores, our averages retain 
more variability and it is easier to assess differences between 
employees, as shown in Table 3. 

z-scores 
Job 
Knowledge 

(0 – 100) 

Personality 
(1 –5) 

Leadership 
(1 – 5) Average 

Employee 
1 1.00 1.14 -1.12 0.34 

Employee 
2 -1.00 -0.43 0.81 -0.20 

Employee 
3 0.00 -0.71 0.30 -0.14 

Table 3. Standardized scores 

Setting the scale of a distribution 

Another convenient characteristic of z-scores is that they can 
be converted into any “scale” that we would like. Here, the term 
scale means how far apart the scores are (their spread) and 
where they are located (their central tendency). In other words, 
we can convert that value into its original raw score (X) if the 
mean and standard deviation are known. We can still do this 
using the Z score formula we have been using so far this lesson. 
We just need to rearrange the variables so we are solving for X 
instead of Z. 
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The formulas for transforming z to x are: 

Note: these are just simple rearrangements of 
the original formulas for calculating z from raw 
scores. 

A problem is that these new z-scores aren’t exactly 
intuitive for many people. We can give people 
information about their relative location in the 
distribution (for instance, the first person scored well 
above average). Another route we can do is to take 
the z-scores and transform them to a known 
distribution, like the traditional IQ distribution. 

Let’s say we have z-scores of 1.71, .43, and – .80 after 
converting their raw intelligence test score to a z-
score. We can translate these z-scores into the more 
familiar metric of IQ scores, which have a mean of 
100 and standard deviation of 16. We can use the 
transforming formula from above: X = z * SD + M 

X = 1.71 ∗ 16 + 100 = 127.36, so 
IQ score of 127 

X = 0.43 ∗ 16 + 100 = 106.88, so 
IQ score of 107 

X = −0.80 ∗ 16 + 100 = 87.20, so 
IQ score of 100 
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We rounded the values to 127, 107, and 87, respectively, for 
convenience. 

Z-scores and the Area under the Curve 

Even though we can use a z-score as a measure of relative 
standing for any shape of frequency distribution, we 
commonly use z-scores in this class when discussing normal 
distributions. They provide a way of describing where an 
individual’s score is located within a distribution and are 
sometimes used to report the results of standardized tests. 

Z-scores and the standard normal distribution go hand-in-
hand. A z-score will tell you exactly where in the standard 
normal distribution a value is located, and any normal 
distribution can be converted into a standard normal 
distribution by converting all of the scores in the distribution 
into z-scores, a process known as standardization. We will also 
see that one can identify the percentile for each z-score in a 
normal distribution. 

Since a z-score tells us how far above or below the mean a 
particular raw score lies (in standard deviation units), we can 
use z-scores in conjunction with the empirical rule. We can use 
z-scores to simplify the earlier statements we made regarding 
the Empirical Rule (68-95-99 rule): 

• 68% of all scores will fall between a Z score of -1.00 and 
+1.00 

• 95% of all scores will fall between a Z score of -2.00 and 
+2.00 

• 99.7% of all scores will fall between a Z score of -3.00 and 
+3.00 

• 50% of all scores lie above/below a Z score of 0.00 

Take a minute to examine Figure 4 to identify these areas.  For 
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example, you can see adding up the 2 areas between z = -1 to 
z = 1, you get 68.2%.  Because z-scores are in units of standard 
deviations, this means that 68% of scores fall between z = -1.0 
and z = 1.0 and so on. We call this 68% (or any percentage we 
have based on our z-scores) the proportion of the area under 
the curve. Remember, these percentages remain true only if 
our sample or population is normally distributed! 

Figure 4. Z-score indicating percentiles in a standardized 
normal distribution. 
Any area under the curve is bounded by (defined by, 
delineated by, etc.) by a single z-score or pair of z-scores. An 
important property to point out here is that, by virtue of the 
fact that the total area under the curve of a distribution is 
always equal to 1.0 (see section on Normal Distributions at the 
beginning of this chapter), these areas under the curve can be 
added together or subtracted from 1 to find the proportion in 
other areas. For example, we know that the area between z = 
-1.0 and z = 1.0 (i.e. within one standard deviation of the mean) 
contains 68% of the area under the curve, which can be 
represented in decimal form at 0.6800 (to change a 
percentage to a decimal, simply move the decimal point 2 
places to the left). Because the total area under the curve is 
equal to 1.0, that means that the proportion of the area outside 
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z= -1.0 and z = 1.0 is equal to 1.0 – 0.6800 = 0.3200 or 32% (see 
Figure 5 below). This area is called the area in the tails of the 
distribution. Because this area is split between two tails and 
because the normal distribution is symmetrical, each tail has 
exactly one-half, or 16%, of the area under the curve. 

Figure 5. Shaded areas represent the area under the curve 
in the tails 
Additionally, z-scores provide one way of defining outliers. 

For example, outliers are sometimes defined as scores that 
have z scores less than −3.00 or greater than +3.00. In other 
words, they are defined as scores that are more than three 
standard deviations from the mean. Some researchers will 
define outliers as greater than 2 standard deviations from the 
mean. 

We will have much more to say about percentiles in a 
distribution in the coming chapters. As it turns out, this is a 
quite powerful idea that enables us to make statements about 
how likely an outcome is and what that means for research 
questions we would like to answer and hypotheses we would 
like to test. But first, we need to make a brief foray into some 
ideas about probability. 
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Learning Objectives 

Having read this chapter, you should be able to: 

• Identify uses for z-score 
• Compute and transform z-scores and x-values 
• Describe the effects of standardizing a distribution 
• Identify the z-score location on a normal distribution 

Exercises – Chapter 6 

1. What are the two pieces of information contained in a z-
score? 

2. A z-score takes a raw score and standardizes it into units 
of. 

3. Assume the following 5 scores represent a sample: 2, 3, 5, 5, 
6. Transform these scores into z-scores. 

4. True or false: 

1. All normal distributions are symmetrical 
2. All normal distributions have a mean of 1.0 
3. All normal distributions have a standard deviation of 

1.0 
4. The total area under the curve of all normal 

distributions is equal to 1 
5. Interpret the location, direction, and distance (near or far) 

of the following z- scores: 

1. -2.00 
2. 1.25 
3. 3.50 
4. -0.34 

6. Transform the following z-scores into a distribution with a 
mean of 10 and standard deviation of 2: -1.75, 2.20, 1.65, 
-0.95 
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7. Calculate z-scores for the following raw scores taken from 
a population with a mean of 100 and standard deviation of 
16:  112, 109, 56, 88, 135, 99 

8. What does a z-score of 0.00 represent? 
9. For a distribution with a standard deviation of 20, find z-

scores that correspond to: 

1. One-half of a standard deviation below the mean 
2. 5 points above the mean 
3. Three standard deviations above the mean 
4. 22 points below the mean 

10. Calculate the raw score for the following z-scores from a 
distribution with a mean of 15 and standard deviation of 3: 

1. 4.0 
2. 2.2 
3. -1.3 
4. 0.46 

11. Let’s say we create a new measure of intelligence, and 
initial calibration finds that our scores have a mean of 40 
and a standard deviation of 7. Three people who have 
scores of 52, 43, and 34 want to know how well they did on 
the measure. Convert their raw scores into z-scores. 

Answers to Odd-Numbered Exercises – Ch. 
6 

1. The location above or below the mean (from the sign of 
the number) and the distance in standard deviations away 
from the mean (from the magnitude of the number). 

3. X = 4.2, s = 1.64; z = -1.34, -0.73, 0.49, 0.49, 1.10 
5. 1. 2 standard deviations below the mean, far 
2. 1.25 standard deviations above the mean, near 
3. 3.5 standard deviations above the mean, far 
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4. 0.34 standard deviations below the mean, near 
7. z = 0.75, 0.56, -2.75, -0.75, 2.19, -0.06 
9. 1. -0.50, 2. 0.25, 3. 3.00, 4. 1.10 
11. Z = (52 − 40)/7 = 1.71 

Z = (43 − 40)/7 = 0.43 
Z = (34-40)/7 = -0.80 
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7.  Chapter 7: 
Probability 

In this lesson, we start to move away from descriptive statistics 
and begin our transition into inferential statistics. Recall that 
the goal of inferential statistics is to draw conclusions or make 
predictions about large populations by using data from smaller 
samples that represent that population. Probability is the 
underlying concept of inferential statistics and forms a direct 
link between samples and the population that they come 
from. In this chapter we will focus only on the principles and 
ideas necessary to lay the groundwork for future inferential 
statistics. We accomplish this by quickly tying the concepts 
of probability to what we already know about normal 
distributions and z-scores. 

What is probability? 

Informally, we usually think of probability as a number that 
describes the likelihood of some event occurring, which ranges 
from zero (impossibility) to one (certainty). Probability can be 
discussed more vaguely.  Chances are low it will rain today. 
Given there are no clouds, chances are low it will rain today. 
“Given” is the word we use to state what the conditions are. As 
the conditions change, so does the probability. Thus, if it were 
cloudy and windy outside, we might say, “given the current 
weather conditions, there is a high probability that it is going to 
rain.” It should also be noted that the terms “low” and “high” are 
relative and vague, and they will likely be interpreted different 
by different people (in other words: given how vague the 
terminology was, the probability of different interpretations is 
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high). In statistics, most of the time we try to use more precise 
language or, even better, numbers to represent the probability 
of our event. Regardless, the basic structure and logic of our 
statements are consistent with how we speak about probability 
using numbers and formulas. 
Sometimes probabilities will instead be expressed in 
percentages, which range from zero to one hundred, as when 
the weather forecast predicts a twenty percent chance of rain 
today. In each case, these numbers are expressing how likely 
that particular event is, ranging from absolutely impossible 
(0%) to absolutely certain (100%). When we speak of the 
probability of something happening, we are talking how likely 
it is that “thing” will happen based on the conditions present.
To formalize probability theory, we first need to define a few 
terms: 
Probability theory is the branch of mathematics that deals 
with chance and uncertainty. It forms an important part of the 
foundation for statistics, because it provides us with the 
mathematical tools to describe uncertain events. The study of 
probability arose in part due to interest in understanding 
games of chance, like cards or dice. These games provide 
useful examples of many statistical concepts, because when 
we repeat these games the likelihood of different outcomes 
remains (mostly) the same. 
To calculate probability, we need an activity that produces or 
observes an outcome is needed. This is typically an experiment 
or any situation or activity in which the result is not known in 
advance. Examples are the outcome for: the weather outside, 
flipping a coin, rolling a 6-sided die, or trying a new route to 
work to see if it’s faster than the old route. 
We also need to know the known outcomes of the activity/
event/experiment. The sample space is the set of possible 
outcomes for an activity. We represent these by listing them 
within a set of squiggly brackets. 
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• For rain is {rain, not rain} 
• For a coin flip, the sample space is {heads, tails}. 
• For a six-sided die, the sample space is each of the 

possible numbers that can appear: {1,2,3,4,5,6}. 
• For the amount of time it takes to get to work, the sample 

space is all possible real numbers greater than zero (since 
it can’t take a negative amount of time to get somewhere, 
at least not yet). We won’t bother trying to write out all of 
those numbers within the brackets. 

An outcome or event is a subset of the sample space to 
examine specific probability. In principle, it could be one or 
more of possible outcomes in the sample space, but here we 
will focus primarily on elementary events which consist of 
exactly one possible outcome. An event is a catch-all term to 
talk about any specific thing happening. 

◦ For example, this could be it rains, obtaining heads in 
a single coin flip, rolling a 4 on a throw of the die, or 
taking 21 minutes to get home by the new route. 

In statistics, we usually define probability as the expected 
relative frequency of a particular outcome.  The relative 
frequency is the number of times an event takes place relative 
to the number of times it could have taken place. 

Let’s look at a slightly deeper example before we learn a basic 
probability formula. Say we have a regular, six-sided die (note 
that “die” is singular and “dice” is plural, a distinction that can 
be hard to get correct on the first try) and want to know how 
likely it is that we will roll a 1. That is, what is the probability 
of rolling a 1, given that the die is not weighted (which would 
introduce what we call a bias, though that is beyond the scope 
of this chapter). We could roll the die and see if it is a 1 or not, 
but that won’t tell us about the probability, it will only tell us a 
single result. We could also roll the die hundreds or thousands 
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of times, recording each outcome and seeing what the final 
list looks like, but this is time-consuming, and rolling a die 
that many times may lead down a dark path to gambling or, 
worse, playing Dungeons & Dragons. What we need is a simple 
equation that represents what we are looking for and what is 
possible. 

To calculate the probability of an event, which here is defined 
as rolling a 1 on an unbiased die, we need to know two things: 
how many outcomes satisfy the criteria of our event (stated 
different, how many outcomes would count as what we are 
looking for) and the total number of outcomes possible. In 
our example, only a single outcome, rolling a 1, will satisfy our 
criteria, and there are a total of six possible outcomes (rolling a 
1, rolling a 2, rolling a 3, rolling a 4, rolling a 5, and rolling a 6). 
Thus, the probability of rolling a 1 on an unbiased die is 1 in 6 or 
1/6. 

Put into an equation using generic terms, we get: 

Probability 

We can also using P( ) as shorthand for 
probability and we can use A as shorthand for an 
event: 
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Probability is usually symbolized by the letter p. The actual 
probability number is usually written as a decimal, though 
sometimes fractions or percentages are used. An event with a 
50-50 chance is usually written as p = .5 but it could be written 
as p = 1/2 or p = 50%. It is also common to see probability written 
as being less than some value, using the less than (<) sign. 
For example, p < .05 means the probability of the event taking 
place is less than .05 or less than 5%. 

Using the above equation, let’s calculate the probability of 
rolling an even number on this die: 

P(even number) = 2, 4, or 6/1, 2, 3, 4, 5, or 6  =  3/6  =  .5. So we 
have a 50% chance of rolling an even number of this die. 

Let’s look at another example, let’s say that we are interested 
in knowing the probability of rain in Phoenix. We first have to 
define the activity — let’s say that we will look at the National 
Weather Service data for each day in 2020 and determine 
whether there was any rain at the downtown Phoenix weather 
station. According to these data, in 2020 there were 15 rainy 
days. To compute the probability of rain in Phoenix, we simply 
divide the number of rainy days by the number of days counted 
(365), giving p(rain in PHX in 2020) = 0.04. 

Now that we have a probability formula, we can outline the 
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formal features of probability (first defined by the Russian 
mathematician Andrei Kolmogorov). These are the features 
that a value has to have if it is going to be a probability. 

• Probability cannot be negative. 
• The total probability of all outcomes in the sample space is 

1; that is, if we take the probability of each event and add 
them up, they must sum to 1. This is interpreted as saying 
“Take all of the possible events and add up their 
probabilities. These must sum to one.” 

• The probability of any individual event cannot be greater 
than one. This is implied by the previous point; since they 
must sum to one, and they can’t be negative, then any 
particular probability cannot exceed one. 

To summarize, the probability that an event happens is the 
number of outcomes that qualify as that event (i.e. the number 
of ways the event could happen) compared to the total number 
of outcomes (i.e. how many things are possible). The principles 
laid out here operate under a certain set of conditions and can 
be elaborated into ideas that are complex yet powerful and 
elegant. However, such extensions are not necessary for a basic 
understanding of statistics, so we will end our discussion on 
the math of probability here. We will now return to a more 
familiar topic. This idea then brings us back around to our 
normal distribution, which can also be broken up into regions 
or areas, each of which are bounded by one or two z-scores 
and correspond to all z- scores in that region. The probability of 
randomly getting one of those z-scores in the specified region 
can then be found on the Standard Normal Distribution Table. 
Thus, the larger the region, the more likely an event is, and vice 
versa. Because the tails of the distribution are, by definition, 
smaller and we go farther out into the tail, the likelihood or 
probability of finding a result out in the extremes becomes 
small. 
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Probability & Frequency Distributions 

For our purposes, we will see shortly that the normal 
distribution is the key to how probability works. If you toss 
a fair coin four times, the outcomes may not be two heads 
and two tails. However, if you toss the same coin 4,000 times, 
the outcomes will be close to half heads and half tails. The 
expected theoretical probability of heads in any one toss is 
1/2 or 0.5. Even though the outcomes of a few repetitions are 
uncertain, there is a regular pattern of outcomes when there 
are many repetitions (law of large numbers). The pattern tends 
to resemble a symmetrical normal distribution. 

To help us think about probability, population, and inferential 
statistics we are going to use a frequency distribution because 
it can be seen as representing an entire population. This can be 
seen as a parallel concept because if all scores are represented 
in a frequency distribution it can function as a normal 
distribution. Using the empirical rule we know that different 
portions of the histogram can represent different proportions 
of the population and the terms proportions and probabilities 
mean the same thing. This means that a proportion of the 
histogram can correspond to the probability of a population. 

Probability in Normal Distributions 

If the language at the end of the last section sounded familiar, 
that’s because its exactly the language used in the last chapter 
to describe the normal distribution. Recall that the normal 
distribution has an area under its curve that is equal to 1 and 
that it can be split into sections by drawing a line through it 
that corresponds to a given z-score. Because of this, we can 
interpret areas under the normal curve as probabilities that 
correspond to z-scores. In this section, we are going to link 
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together the concepts of population, probability, and z-scores. 
We learned earlier that a frequency distribution can represent 
an entire population of scores. The shape of a frequency 
distribution for an entire population forms a symmetrical 
normal curve and certain proportions can be assigned to 
specific parts of the distribution. 

Figure 1. Z-Score Distribution. Photo Credit: M. W. Toews, via 
Wikimedia Commons 

The graph above (Figure 1) only shows us some of the 
proportions associated with specific z-score values but the Unit 
Normal Table lists all possible values for a normal distribution. 
This means that we can use z-scores to help us find the specific 
probability for a specific outcome or event. 

First, let’s look back at the area between z = -1.00 and z = 1.00 
presented in Figure 2. 

• We were told earlier that this region contains 68% of the 
area under the curve. Thus, if we randomly chose a z-score 
from all possible z-scores, there is a 68% chance that it will 
be between z = -1.00 and z = 1.00 because those are the z-
scores that satisfy our criteria. 
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Figure 2: There is a 68% chance of selection a z-score from 
the blue-shaded region 

Just like a pie chart is broken up into slices by drawing lines 
through it, we can also draw a line through the normal 
distribution to split it into sections. Take a look at the normal 
distribution in Figure 3 which has a line drawn through it as 
z = 1.25. This line creates two sections of the distribution: the 
smaller section called the tail and the larger section called the 
body. Differentiating between the body and the tail does not 
depend on which side of the distribution the line is drawn. All 
that matters is the relative size of the pieces: bigger is always 
body. 
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Figure 3. Body and tail of the normal distribution 
As you can see, we can break up the normal distribution into 3 
pieces (lower tail, body, and upper tail) as in Figure 2 or into 2 
pieces (body and tail) as in Figure 3. We can then find the 
proportion of the area in the body and tail based on where the 
line was drawn (i.e. at what z-score). Mathematically this is 
done using calculus. 
Fortunately, the exact values are given you to you in the 
Standard Normal Distribution Table, also known at the z-
table. Using the values in this table, we can find the area 
under the normal curve in any body, tail, or combination of 
tails no matter which z-scores are used to define them. 
The z-table presents the values for the area under the curve to 
the left of the positive z-scores from 0.00-3.00 (technically 
3.09), as indicated by the shaded region of the distribution at 
the top of the table. To find the appropriate value, we first find 
the row corresponding to our z-score then follow it over until 
we get to the column that corresponds to the number in the 
hundredths place of our z-score. For example, suppose we 
want to find the area in the body for a z-score of 1.62. 

We would first find the row for 1.60 then follow it across to the 
column labeled 
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• (1.60 + 0.02 = 1.62) and find 0.9474 (see Figure 4). Thus, the 
odds of randomly selecting someone with a z-score less 
than (to the left of) z = 1.62 is 94.74% because that is the 
proportion of the area taken up by values that satisfy our 
criteria. 

Figure 4. Using the z-table to find the area in the body to the 
left of z = 1.62 

The z-table only presents the area in the body for positive z-
scores because the normal distribution is symmetrical. Thus, 
the area in the body of z = 1.62 is equal to the area in the body 
for z = -1.62, though now the body will be the shaded area to 
the right of z (because the body is always larger). When in 
doubt, drawing out your distribution and shading the area you 
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need to find will always help. The table also only presents the 
area in the body because the total area under the normal 
curve is always equal to 1.00, so if we need to find the area in 
the tail for z = 1.62, we simply find the area in the body and 
subtract it from 1.00 (1.00 – 0.9474 = 0.0526). 

Let’s look at another example. This time, let’s find the area 
corresponding to z- scores more extreme than z = -1.96 and z 
= 1.96. That is, let’s find the area in the tails of the distribution 
for values less than z = -1.96 (farther negative and therefore 
more extreme) and greater than z = 1.96 (farther positive and 
therefore more extreme). This region is illustrated in Figure 5. 

Figure 5. Area in the tails beyond z = -1.96 and z = 1.96 
Let’s start with the tail for z = 1.96. If we go to the 

z-table we will find that the body to the left of z = 
1.96 is equal to 0.9750. To find the area in the tail, 
we subtract that from 1.00 to get 0.0250. Because 
the normal distribution is symmetrical, the area in 
the tail for z = -1.96 is the exact same value, 0.0250. 

Finally, to get the total area in the shaded region, 
we simply add the areas together to get 0.0500. 
Thus, there is a 5% chance of randomly getting a 
value more extreme than z = -1.96 or z = 1.96 (this 
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particular value and region will become incredibly 
important in Unit 2). 

Finally, we can find the area between two z-scores 
by shading and subtracting. Figure 6 shows the area 
between z = 0.50 and z = 1.50. Because this is a 
subsection of a body (rather than just a body or a tail), 
we must first find the larger of the two bodies, in this 
case the body for z = 1.50, and subtract the smaller 
of the two bodies, or the body for z = 0.50. Aligning 
the distributions vertically, as in Figure 6, makes this 
clearer. From the z-table, the area in the body for z 
= 1.50 is 0.9332 and the area in the body for z = 0.50 
is 0.6915. Subtracting these gives us 0.9332 – 0.6915 = 
0.2417. 
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Figure 6. Area between z = 0.50 and 1.50, along 
with the corresponding areas in the body 

Considerations in understanding 
probability and inferential statistics: 
sampling 

Recall that the goal of inferential statistics is to draw 
conclusions or make predictions about large populations by 
using data from smaller samples that represent that 
population. Probability is the underlying concept of inferential 
statistics and forms a direct link between samples and the 
population that they come from.

Figure 7. The relationship between inferential statistics and 
probability 

As we learned earlier, gathering information about an entire 
population often costs too much or is virtually impossible. 
Instead, we use a sample of the population. A sample should 
have the same characteristics as the population it is 
representing. Random sampling is one method that may 
ensure representativeness of a sample. For our definition of 
probability to be consistent and accurate we must ensure two 
elements: 

1. Every person in the population has an equal chance of 
being selected 

2. Sampling occurs with replacement 
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For random sampling a researcher starts with a complete list 
of the population (sometimes referred to as a sampling frame) 
and randomly selects some of them to an experiment. In this 
way every member of the population has an equal chance of 
being selected to participate. In order for the total number 
of outcomes to remain constant we need sampling with 
replacement – this means as one person is selected, another 
person must be added to keep the total number of possible 
outcomes the same. This is the full definition of random 
sampling. 

For example, if the population is 25 people, the sample is 
ten, and you are sampling with replacement for any particular 
sample, then the chance of picking the first person is ten out of 
25, and the chance of picking a different second person is nine 
out of 25 (you replace the first person). If you sample without 
replacement, then the chance of picking the first person is ten 
out of 25, and then the chance of picking the second person 
(who is different) is nine out of 24 (you do not replace the first 
person). 
Compare the fractions to four decimal places: 
●       9/25 = 0.3600 
●       9/24 = 0.3750 

It is clear that these numbers are not equivalent. Since we 
are using small samples as a stand-in for large populations 
in a research experiment, there will always be a certain level 
of uncertainty in our conclusions. How do we know that 
calculating statistical probability gives us the right number? 
The answer to this question comes from the law of large 
numbers, which shows that the empirical probability will 
approach the true probability as the sample size increases. We 
can see this by simulating a large number of coin flips, and 
looking at our estimate of the probability of heads after each 
flip. 

The left panel of Figure 8 shows that as the number of samples 
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(i.e., coin flip trials) increases, the estimated probability of heads 
converges onto the true value of 0.5. It’s unlikely that any of us 
has ever flipped a coin tens of thousands of times, but we are 
nonetheless willing to believe that the probability of flipping 
heads is 0.5. However, note that the estimates can be very far 
off from the true value when the sample sizes are small. A real-
world example of this was seen in the 2017 special election for 
the US Senate in Alabama, which pitted the Republican Roy 
Moore against Democrat Doug Jones. The right panel of Figure 
8 shows the relative amount of the vote reported for each of 
the candidates over the course of the evening, as an increasing 
number of ballots were counted. Early in the evening the vote 
counts were especially volatile, swinging from a large initial 
lead for Jones to a long period where Moore had the lead, until 
finally Jones took the lead to win the race. 

Figure 8: Left: A demonstration of the law of large numbers. 
A coin was flipped 30,000 times, and after each flip the 
probability of heads was computed based on the number of 
heads and tail collected up to that point. It takes about 15,000 
flips for the probability to settle at the true probability of 0.5. 
Right: Relative proportion of the vote in the Dec 12, 2017 special 
election for the US Senate seat in Alabama, as a function of the 
percentage of precincts reporting. These data were transcribed 
from https://www.ajc.com/news/national/alabama-senate-
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race-live-updates-roy-moore-doug-jones/
KPRfkdaweoiXICW3FHjXqI/ 

These two examples show that while large samples will 
ultimately converge on the true probability, the results with 
small samples can be far off. Unfortunately, many people forget 
this and overinterpret results from small samples. This was 
referred to as the law of small numbers by the psychologists 
Danny Kahneman and Amos Tversky, who showed that people 
(even trained researchers) often behave as if the law of large 
numbers applies even to small samples, giving too much 
credence to results based on small datasets. We will see 
examples throughout the course of just how unstable 
statistical results can be when they are generated on the basis 
of small samples. Furthermore, a very important point: even 
if we are able to make an accurate prediction, we can never 
prove with 100% certainty that this prediction will hold true 
in all possible situations. This is because samples never have 
exactly the same characteristics of the population from which 
they come from. Therefore, we will always have some level of 
uncertainty about whether the results found in our sample are 
also found in the population. The best we can do is infer what is 
most likely to be found. Our level of confidence in an inferential 
statistic or the outcome of an experiment is represented 
through probability theory. 

More Probability Terms 

A probability distribution describes the probability of all of the 
possible outcomes in an activity. For example, on Jan 20 2018, 
the basketball player Steph Curry hit only 2 out of 4 free throws 
in a game against the Houston Rockets. We know that Curry’s 
overall probability of hitting free throws across the entire 
season was 0.91, so it seems pretty unlikely that he would hit 
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only 50% of his free throws in a game, but exactly how unlikely 
is it? We can determine this using a theoretical probability 
distribution; throughout this book we will encounter a number 
of these probability distributions, each of which is appropriate 
to describe different types of data. In this case, we use the 
binomial distribution, which provides a way to compute the 
probability of some number of successes out of a number of 
trials on which there is either success or failure and nothing 
in between (only 2 outcomes), given some known probability 
of success on each trial. In this example, if we calculated the 
probability of Curry making 2 of 4 free throws when his season 
average was .91, it would come out to a 4% chance

1
.  This shows 

that given Curry’s overall free throw percentage, it is very 
unlikely that he would hit only 2 out of 4 free throws. This just 
goes to show that unlikely things do actually happen in the 
real world. 

Often though, we might want to know how likely it is to find a 
value that is as extreme or more than a particular value versus 
a specific value; this will become very important when we 
discuss hypothesis testing in Chapter 8. To answer this 
question, we can use a cumulative probability distribution; 
whereas a standard probability distribution tells us the 
probability of some specific value, the cumulative distribution 
tells us the probability of a value as large or larger (or as small 
or smaller) than some specific value.  For the Curry free-throw 
example, this would be .043

2
.  In many cases the number of 

possible outcomes would be too large for us to compute the 

1. The fine print calculating Steph Curry’s free throws probability: 
P(2;4,0.91)=(42)0.912(1−0.91)4−2=0.040 

2. Fine print: To determine this, we could use the binomial probability 
equation and plug in all of the possible values of outcomes and add 
them together: P(k≤2)=P(k=2)+P(k=1)+P(k=0)=6e−5+.002+.040=.043 P(k\
le2)= P(k=2) + P(k=1) + P(k=0) = 6e^{-5} + .002 + .040 = .043 
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cumulative probability by enumerating all possible values; 
fortunately, it can be computed directly for any theoretical 
probability distribution. 

Although we have infomation, sometimes we can be 
mislead.  Let’s use the example of a coin toss. Each toss is 
independent of one another with only 2 outcomes {heads, 
tails}. What if I want to calculate the probability of getting 
heads for a coin toss? I might base that on my previous 12 coin 
flips. A coin might come up heads 8 times out of 12 flips, for a 
relative frequency of 8/12 or 2/3. Again, the probability is usually 
calculated as the proportion of successful outcomes divided by 
the number of all possible outcomes. What happens if I toss 
the coin again? What is the probability that it will be heads 
again? Do I use information from my previous 12 flips? Well, 
the answer is ½ or 50%. That is because in our scenario, each 
toss is independent and each outcome is independent. This 
means that the outcome of the ninth toss is not related to the 
previous toss. To assume otherwise is committing what we call 
gambler’s fallacy. 

The term “independent” has a very specific meaning in 
statistics, which is somewhat different from the common 
usage of the term. Statistical independence between two 
variables means that knowing the value of one variable doesn’t 
tell us anything about the value of the other. This can be 
expressed as: P(A|B)=P(A). That is, the probability of A given 
some value of B is just the same as the overall probability of 
A (because they are independent). Again, while independence 
in common language often refers to sets that are exclusive, 
statistical independence refers to the case where one cannot 
predict anything about one variable from the value of another 
variable. For example, knowing a person’s hair color is unlikely 
to tell you whether they prefer chocolate or strawberry ice 
cream. Later in the book we will discuss statistical tools that 
will let us directly test whether two variables are independent. 
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Sometimes we want to quantify the relation between 
probabilities more directly, which we can do by converting 
them into odds which express the relative likelihood of 
something happening or not. We can use odds to compare 
different probabilities, by computing what is called an odds 
ratio – which is exactly what it sounds like. For example, let’s say 
that we want to know how much the positive test increases the 
individual’s odds of having cancer. We can first compute the 
prior odds – that is, the odds before we knew that the person 
had tested positively. An odds ratio is an example of what we 
will later call an effect size, which is a way of quantifying how 
relatively large any particular statistical effect is. 

A final point relates to how probabilities have been interpreted. 
Historically, there have been two different ways that 
probabilities have been interpreted. The first (known as the 
frequentist interpretation) interprets probabilities in terms of 
long-run frequencies. For example, in the case of a coin flip, it 
would reflect the relative frequencies of heads in the long run 
after a large number of flips. While this interpretation might 
make sense for events that can be repeated many times like 
a coin flip, it makes less sense for events that will only happen 
once, like an individual person’s life or a particular presidential 
election; and as the economist John Maynard Keynes famously 
said, “In the long run, we are all dead.” The other interpretation 
of probabilities (known as the Bayesian interpretation) is as 
a degree of belief in a particular proposition. If I were to ask 
you “How likely is it that the US will return to the moon by 
2040”, you can provide an answer to this question based on 
your knowledge and beliefs, even though there are no relevant 
frequencies to compute a frequentist probability. One way that 
we often frame subjective probabilities is in terms of one’s 
willingness to accept a particular gamble. For example, if you 
think that the probability of the US landing on the moon by 
2040 is 0.1 (i.e. odds of 9 to 1), then that means that you should 

220  |  Chapter 7: Probability



be willing to accept a gamble that would pay off with anything 
more than 9 to 1 odds if the event occurs. As we will see, these 
two different definitions of probability are very relevant to the 
two different ways that statisticians think about testing 
statistical hypotheses, which we will encounter in later 
chapters. 

Recap 

Probability is a mathematical tool used to study randomness. 
It deals with the chance (the likelihood) of an event occurring. 
The theory of probability began with the study of games of 
chance such as poker. Predictions take the form of 
probabilities. To predict the likelihood of an earthquake, of rain, 
or whether you will get an A in this course, we use probabilities. 
Doctors use probability to determine the chance of a 
vaccination causing the disease the vaccination is supposed to 
prevent. A stockbroker uses probability to determine the rate of 
return on a client’s investments. You might use probability to 
decide to buy a lottery ticket or not. In your study of statistics, 
you will use the power of mathematics through probability 
calculations to analyze and interpret your data. 

Learning objectives 

Having read this chapter, you should be able to: 

• Describe the sample space for a selected random 
experiment. 

• Describe the law of large numbers. 
• Describe the difference between a probability and a 

conditional probability 

Chapter 7: Probability  |  221



• Describe the relationship between z-scores and the 
standard unit normal table (z-table) 

• Probability is a tough topic for everyone, but the tools it 
gives us are incredibly powerful and enable us to do 
amazing things with data analysis. They are the heart of 
how inferential statistics work. 

Exercises – Ch. 7 

1. In your own words, what is probability? 
2. There is a bag with 5 red blocks, 2 yellow blocks, and 4 

blue blocks. If you reach in and grab one block without 
looking, what is the probability it is red? 

3. Under a normal distribution, which of the following is 
more likely? (Note: this question can be answered without 
any calculations if you draw out the distributions and 
shade properly) 

1. Getting a z-score greater than z = 2.75 
2. Getting a z-score less than z = -1.50 

4. The heights of women in the United States are normally 
distributed with a mean of 63.7 inches and a standard 
deviation of 2.7 inches. If you randomly select a woman in 
the United States, what is the probability that she will be 
between 65 and 67 inches tall? 

5. The heights of men in the United States are normally 
distributed with a mean of 69.1 inches and a standard 
deviation of 2.9 inches. What proportion of men are taller 
than 6 feet (72 inches)? 

6. You know you need to score at least 82 points on the final 
exam to pass your class. After the final, you find out that 
the average score on the exam was 78 with a standard 
deviation of 7. How likely is it that you pass the class? 

7. What proportion of the area under the normal curve is 
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greater than z = 1.65? 
8. Find the z-score that bounds 25% of the lower tail of the 

distribution. 
9. Find the z-score that bounds the top 9% of the 

distribution. 
10. In a distribution with a mean of 70 and standard deviation 

of 12, what proportion of scores are lower than 55? 

Answers to Odd-Numbered Exercises – Ch. 
7 

1. Your answer should include information about an event 
happening under certain conditions given certain criteria. You 
could also discuss the relation between probability and the 
area under the curve or the proportion of the area in a chart. 
3. Getting a z-score less than z = -1.50 is more likely. z = 2.75 is 
farther out into the right tail than z = -1.50 is into the left tail, 
therefore there are fewer more extreme scores beyond 2.75 
than -1.50, regardless of the direction 
5. 15.87% or 0.1587 
7. 4.95% or 0.0495 

9. z = 1.34 (the top 9% means 9% of the area is in the upper 
tail and 91% is in the body to the left; finding the value in the 
normal table closest to .9100 is .9099, which corresponds to z = 
1.34) 
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8.  Chapter 8: Sampling 
Distributions 

People, Samples, and Populations 

Most of what we have dealt with so far has concerned 
individual scores grouped into samples, with those samples 
being drawn from and, hopefully, representative of a 
population. We saw how we can understand the location of 
individual scores within a sample’s distribution via z-scores, and 
how we can extend that to understand how likely it is to 
observe scores higher or lower than an individual score via 
probability. 
Inherent in this work is the notion that an individual score will 
differ from the mean, which we quantify as a z-score. All of the 
individual scores will differ from the mean in different 
amounts and different directions, which is natural and 
expected. We quantify these differences as variance and 
standard deviation. 
Measures of spread and the idea of variability in observations is 
a key principle in inferential statistics. We know that any 
observation, whether it is a single score, a set of scores, or a 
particular descriptive statistic will differ from the center of 
whatever distribution it belongs in. 
This is equally true of things outside of statistics and format 
data collection and analysis. Some days you hear your alarm 
and wake up easily, other days you need to hit snooze a few 
[dozen] times. Some days traffic is light, other days it is very 
heavy. Some classes you are able to focus, pay attention, and 
take good notes, but other days you find yourself zoning out 
the entire time. Each individual observation is an insight but is 
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not, by itself, the entire story, and it takes an extreme deviation 
from what we expect for us to think that something strange is 
going on. Being a little sleepy is normal, but being completely 
unable to get out of bed might indicate that we are sick. Light 
traffic is a good thing, but almost no cars on the road might 
make us think we forgot it is Saturday. Zoning out occasionally 
is fine, but if we cannot focus at all, we might be in a stats 
class rather than a fun one. 

All of these principles carry forward from scores within samples 
to samples within populations. Just like an individual score will 
differ from its mean, an individual sample mean will differ from 
the true population mean. We encountered this principle in 
earlier chapters: sampling error. As mentioned way back in 
chapter 1, sampling error is an incredibly important principle. 
We know ahead of time that if we collect data and compute 
a sample, the observed value of that sample will be at least 
slightly off from what we expect it to be based on our supposed 
population mean; this is natural and expected. However, if our 
sample mean is extremely different from what we expect 
based on the population mean, there may be something going 
on. 

Sampling 

One of the foundational ideas in statistics is that we can make 
inferences about an entire population based on a relatively 
small sample of individuals from that population. In this 
chapter, we will introduce the concept of statistical sampling 
and discuss why it works. 

Anyone living in the United States will be familiar with the 
concept of sampling from the political polls that have become 
a central part of our electoral process. In some cases, these 
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polls can be incredibly accurate at predicting the outcomes 
of elections. The best known example comes from the 2008 
and 2012 US Presidential elections when the pollster Nate Silver 
correctly predicted electoral outcomes for 49/50 states in 2008 
and for all 50 states in 2012. Silver did this by combining data 
from 21 different polls, which vary in the degree to which they 
tend to lean towards either the Republican or Democratic side. 
Each of these polls included data from about 1000 likely voters 
– meaning that Silver was able to almost perfectly predict the 
pattern of votes of more than 125 million voters using data from 
only about 21,000 people, along with other knowledge (such as 
how those states have voted in the past). 

How do we sample? 

Our goal in sampling is to determine the value of a statistic 
for an entire population of interest, using just a small subset 
of the population. We do this primarily to save time and effort 
– why go to the trouble of measuring every individual in the 
population when just a small sample is sufficient to accurately 
estimate the statistic of interest? 

In the election example, the population is all registered voters 
in the region being polled, and the sample is the set of 1000 
individuals selected by the polling organization. The way in 
which we select the sample is critical to ensuring that the 
sample is representative of the entire population, which is a 
main goal of statistical sampling. It’s easy to imagine a non-
representative sample; if a pollster only called individuals 
whose names they had received from the local Democratic 
party, then it would be unlikely that the results of the poll 
would be representative of the population as a whole. In 
general, we would define a representative poll as being one in 
which every member of the population has an equal chance of 
being selected. When this fails, then we have to worry about 
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whether the statistic that we compute on the sample is biased 
– that is, whether its value is systematically different from the 
population value (which we refer to as a parameter). Keep in 
mind that we generally don’t know this population parameter, 
because if we did then we wouldn’t need to sample! But we will 
use examples where we have access to the entire population, 
in order to explain some of the key ideas. 

It’s important to also distinguish between two different ways 
of sampling: with replacement versus without replacement. In 
sampling with replacement, after a member of the population 
has been sampled, they are put back into the pool so that 
they can potentially be sampled again. In sampling without 
replacement, once a member has been sampled they are not 
eligible to be sampled again. It’s most common to use 
sampling without replacement. 

Sampling error 

Regardless of how representative our sample is, it’s likely that 
the statistic that we compute from the sample is going to differ 
at least slightly from the population parameter. We refer to this 
as sampling error. If we take multiple samples, the value of our 
statistical estimate will also vary from sample to sample; we 
refer to this distribution of our statistic across samples as the 
sampling distribution. 

Sampling error is directly related to the quality of our 
measurement of the population. Clearly, we want the estimates 
obtained from our sample to be as close as possible to the 
true value of the population parameter. However, even if our 
statistic is unbiased (that is, we expect it to have the same 
value as the population parameter), the value for any particular 
estimate will differ from the population value, and those 
differences will be greater when the sampling error is greater. 
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Thus, reducing sampling error is an important step towards 
better measurement. 

Until now we used z-scores and probability we were only 
looking for the probability of finding one score (n = 1) but most 
research involves looking at larger samples. Using samples 
allows us to make generalizations to the larger population but 
there are some limitations. We know that the samples will look 
different even when they come from the same population and 
the difference between the sample and population is known as 
sampling error. 

Suppose you randomly sampled 10 people from the 
population of women in Houston, Texas, between the ages of 21 
and 35 years and computed the mean height of your sample. 
You would not expect your sample mean to be equal to the 
mean of all women in Houston. It might be somewhat lower 
or it might be somewhat higher, but it would not equal the 
population mean exactly. Similarly, if you took a second sample 
of 10 people from the same population, you would not expect 
the mean of this second sample to equal the mean of the first 
sample 

It is possible to get thousands of samples from one 
population. These samples will each look different but the 
sample means, when placed in a frequency distribution from 
a simple, predictable pattern. The pattern makes it possible to 
predict sample characteristics with some degree of accuracy. 
These predictions are based on the distribution of sample 
means, which is a collection of all possible random samples of 
a particular size that can be obtained from a population. 

The concept of a sampling distribution is perhaps the most 
basic concept in inferential statistics but it is also a difficult 
concept because a sampling distribution is a theoretical 
distribution rather than an empirical distribution. The 
distribution is based on sample statistics (sample means) not 
on individual scores. The distribution of sample means is 
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formed by statistics obtained by selecting all possible samples 
of a specific size from a population. 

This can feel very abstract and confusing so let’s use an 
example to illustrate what we mean. Let’s look at a rather 
unique population of scores. This population is very small and 
consists of only four scores: one 2, one 4, one 6, and one 8. Next, 
we are going to take a bunch of samples from this population. 
Each of our samples will consist of two scores. That is, the 
sample size is 2 (n = 2). Because this population is so small we 
can take every sample possible from the population. Below is a 
table showing all 16 possible samples of n = 2. 

Sample # First Score Second Score Sample Mean (M) 

1 2 2 2 

2 2 4 3 

3 2 6 4 

4 2 8 5 

5 4 2 3 

6 4 4 4 

7 4 6 5 

8 4 8 6 

9 6 2 4 

10 6 4 5 

11 6 6 6 

12 6 8 7 

13 8 2 5 

14 8 4 6 

15 8 6 7 

16 8 8 8 

Table 1. Possible sampling with n=2 with 4 possible scores 
The far right column shows the mean of each sample. These 
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16 sample means have been used to create their own 
frequency distribution. Therefore, we can call this frequency 
distribution a distribution of sample means (see Figure 1). 

Figure 1. Distribution of sample means for n=2 from Table 1. 
In our example, a population was specified (N = 4) and the 

sampling distribution was determined. In practice, the process 
actually moves the other way: you collect sample data and 
from these data you estimate parameters of the sampling 
distribution. This knowledge of the sampling distribution can 
be very useful. For example, knowing the degree to which 
means from different samples would differ from each other 
and from the population mean would give you a sense of how 
close your particular sample mean is likely to be to the 
population mean. This information is directly available from a 
sampling distribution. 

We will use the NHANES dataset (National Health and Nutrition 
Examination Study mentioned in chapter 1) as another 
example; we are going to assume that the NHANES dataset is 
the entire population of interest, and then we will draw random 
samples from this population. We will have more to say in the 
next chapter about exactly how the generation of “random” 
samples works in a computer. 

In this example, we know the adult population mean (168.35) 
and standard deviation (10.16) for height because we are 
assuming that the NHANES dataset is the population. Table 
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2 shows the statistics computed from a few samples of 50 
individuals from the NHANES population. 

Table 2: Example means and standard deviations for several 
samples of Height variable from NARPS 

sampleMean sampleSD 

167 9.1 

171 8.3 

170 10.6 

166 9.5 

168 9.5 

The sample mean and standard deviation are similar but not 
exactly equal to the population values. Now let’s take a large 
number of samples of 50 individuals, compute the mean for 
each sample, and look at the resulting sampling distribution 
of means. We have to decide how many samples to take in 
order to do a good job of estimating the sampling distribution 
– in this case, we will take 5000 samples so that we are very 
confident in the answer. Note that simulations like this one can 
sometimes take a few minutes to run, and might make your 
computer huff and puff. The histogram in Figure 2 shows that 
the means estimated for each of the samples of 50 individuals 
vary somewhat, but that overall they are centered around the 
population mean. The average of the 5000 sample means 
(168.3463) is very close to the true population mean (168.3497). 
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Figure 2: The blue histogram shows the sampling 
distribution of the mean over 5000 random samples from the 
NHANES dataset. The histogram for the full dataset is shown in 
gray for reference. 

The Sampling Distribution of Sample 
Means 

To see how we use sampling error, we will learn about a new, 
theoretical distribution known as the sampling distribution. In 
the same way that we can gather a lot of individual scores and 
put them together to form a distribution with a center and 
spread, if we were to take many samples, all of the same size, 
and calculate the mean of each of those, we could put those 
means together to form a distribution. This new distribution 
is, intuitively, known as the distribution of sample means. It 
is one example of what we call a sampling distribution, we 
can be formed from a set of any statistic, such as a mean, a 
test statistic, or a correlation coefficient (more on the latter 
two in Units 2 and 3). For our purposes, understanding the 
distribution of sample means will be enough to see how all 
other sampling distributions work to enable and inform our 
inferential analyses, so these two terms will be used 
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interchangeably from here on out. Let’s take a deeper look at 
some of its characteristics. 

The sampling distribution of sample means can be described 
by its shape, center, and spread, just like any of the other 
distributions we have worked with. The shape of our sampling 
distribution is normal: a bell-shaped curve with a single peak 
and two tails extending symmetrically in either direction, just 
like what we saw in previous chapters. 

Guidelines of a Distribution of Sample 
Means (DSM) 

In order for a distribution of sampling means (DSM) to be 
accurate we must draw every possible sample out of the 
population and plot its mean. In the first example, with our 
population of just four scores, it wasn’t very difficult to do this. 
Most populations are much larger than our simple example. 
In real life, to make a complete, accurate DSM we should have 
collected over 12 trillion samples in order to plot every sample 
mean possible. This is not efficient and fortunately we do not 
have to do it because we can estimate parameters. 

If we know the mean (μ) and standard deviation (σ) of the 
distribution of individual scores, then we can estimate the 
mean and standard deviation of the distribution of sample 
means without having to make thousands, millions and 
trillions of calculations. We can follow three simple guidelines: 

1. Shape 

The shape of the distribution of sample means (DSM) will be 
normal if either one of the following two conditions are met: 
●       Population from which the sample is selected in normal 
or 
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●       The size of the sample is relatively large (30>) 

We will talk more about this later, but note that with samples 
larger than 30, the sampling distribution of the mean is normal 
even if the data within each sample are not normally 
distributed. This is an important concept because if we want to 
apply the proportions and probabilities of a normal distribution 
then the shape of the distribution of sample means must 
approximate the shape.  Also, not all parameters of a 
population follow a normal distribution and not all research 
questions are interested in these parameters – but with a large 
enough sample, even skewed population parameters can 
approximate the normal distribution. 

2. Mean 

The mean of the distribution of sampling means is the mean of 
the population from which the scores were sampled. Therefore, 
if a population has a mean μ, then the mean of the sampling 
distribution of the mean is also μ. The symbol μM is used to 
refer to the mean of the sampling distribution of the mean. 

The formula for the mean of the sampling distribution 
of the mean can be written as: μM = μ 

This can also be written as μx̄ to denote it as the mean of the 
sample means. As you can see the mean for the distribution of 
the sample means is exactly the same as the population mean. 
We would expect these values to be the same. The center of 
the sampling distribution of sample means – which is, itself, the 
mean or average of the means – is the true population mean, 
μ. 

3. Standard Deviation 

The most common measure of how much sample means differ 

234  |  Chapter 8: Sampling Distributions



from each other is the standard deviation of the distribution of 
sampling means. This standard deviation is called the standard 
error of the mean and it measures the expected difference 
between the sample mean (M) and the population mean (µ). 
Standard error is a valuable tool because it is a measure of how 
closely the sample matches the population. This is important 
because our overall goal in inferential statistics is to use 
samples to talk about the larger population. We estimate the 
standard error by taking the standard deviation of the original 
sample of population and divide it by the square root of the 
sample size. 

Standard Error of the Mean  (noted as σx̄ or σM).     
                                                                                                   

                          

Notice that the sample size is in the standard error equation. 
As stated above, the sampling distribution refers to samples of 
a specific size. That is, all sample means must be calculated 
from samples of the same size n, such n = 10, n = 30, or n = 100. 
This sample size refers to how many people or observations are 
in each individual sample, not how many samples are used to 
form the sampling distribution. This is because the sampling 
distribution is a theoretical distribution, not one we will ever 
actually calculate or observe. Note that we have to be careful 
about computing standard error using the estimated standard 
deviation if our sample is small (less than about 30). 

The formula for the standard error of the mean implies that 
the quality of our measurement involves two quantities: the 
population variability, and the size of our sample. Because the 
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sample size is the denominator in the formula for standard 
error a larger sample size will yield a smaller standard error 
when holding the population variability constant. We have no 
control over the population variability, but we do have control 
over the sample size. Thus, if we wish to improve our sample 
statistics (by reducing their sampling variability) then we 
should use larger samples. The expected difference between 
sample means and population mean is closely related to the 
elements formula – sample size and standard deviation. 
●       A large sample size will result in small error because we 
expect that a large sample to be more representative of the 
population. 
●       Small standard deviation will result in small error because 
the variability of scores within the population are clustered 
more closely around the mean. 
The formula also tells us something very fundamental about 
statistical sampling – namely, that the utility of larger samples 
diminishes with the square root of the sample size.  In chapter 
11, we will discuss statistical power, which is intimately tied to 
this idea. 

Figure 3 displays three guidelines for the distribution of sample 
means in graphical form. 
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Figure 3. The sampling distribution of sample means 

We can also compare this sampling distribution of the means 
to that of a population. Because the standard error takes the 
standard deviation and divides it by a number greater than 1, 
the value of the standard error will always be smaller than the 
value of the standard deviation. Also, by taking the mean of 
all sample means, we are automatically reducing the variability 
between scores. Each sample mean is a summary statistic that 
represents the center of that sample. A sample mean “washes 
out” individual high and low scores in that sample by creating 
the average. Further, because each sample mean (M) is an 
approximation of the population mean (μ), the sample means 
cluster more tightly around μ than individual scores. The 
amount of variability among sample means (σM) depends on 
the amount of variability among the individual scores in the 
population (σ) and on the size of samples (n) used to create 
the DSM. This is show in Figure 4 and connects back to our 
example in Figure 2. In other words, variability among sample 
means in a distribution of sample means will be reduced as 
sample size is increased, and/or as population variability is 
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reduced. One way to remember this is to think about the 
formula we use to calculate the standard error. We calculate 
the standard error (σM) by dividing the standard deviation (σ) 
by the square root of the sample size (n). 

Figure 4. Distributions based on population, sample size of 5 
and sample size of 30. Image credit 
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Two Important Axioms 

We just learned that the sampling distribution that are 
connected to two very important mathematical facts: the 
central limit theorem and the law of large numbers. We will 
not go into the math behind how these statements were 
derived, but knowing what they are and what they mean is 
important to understanding why inferential statistics work 
and how we can draw conclusions about a population based 
on information gained from a single sample. 

Central Limit Theorem 

The Central Limit Theorem: 
For samples of a single size n, drawn from a population with 

a given mean μ and variance σ2, the sampling distribution of 
sample means will have a mean μ⯑̅ = μ and variance σ2 = 
σ2/n. This distribution will approach normality as n increases 
tells us that as sample sizes get larger, the sampling 
distribution of the mean will become normally distributed. The 
last sentence of the central limit theorem states that the 
sampling distribution will be normal as the sample size of the 
samples used to create it increases. What this means is that 
bigger samples will create a more normal distribution, so we 
are better able to use the techniques we developed for normal 
distributions and probabilities. So how large is large enough? 
In general, a sampling distribution will be normal if either of 
two characteristics is true: 1) the population from which the 
samples are drawn is normally distributed or 2) the sample 
size is equal to or greater than 30. This second criteria is very 
important because it enables us to use methods developed for 
normal distributions even if the true population distribution is 
skewed. 

To see the central limit theorem in action, let’s work with the 
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variable AlcoholYear from the NHANES dataset, which is highly 
skewed, as shown in the left panel of Figure 5. This distribution 
is, for lack of a better word, funky – and definitely not normally 
distributed. Now let’s look at the sampling distribution of the 
mean for this variable. Figure 5 shows the sampling 
distribution for this variable, which is obtained by repeatedly 
drawing samples of size 50 from the NHANES dataset and 
taking the mean. Despite the clear non-normality of the 
original data, the sampling distribution is remarkably close to 
the normal. 

Figure 5: Left: Distribution of the variable AlcoholYear in the 
NHANES dataset, which reflects the number of days that the 
individual drank in a year. Right: The sampling distribution of 
the mean for AlcoholYear in the NHANES dataset, obtained 
by drawing repeated samples of size 50, in blue. The normal 
distribution with the same mean and standard deviation is 
shown in red. 

The Central Limit Theorem is important for statistics because 
it allows us to safely assume that the sampling distribution 
of the mean will be normal in most cases. This means that 
we can take advantage of statistical techniques that assume 
a normal distribution, as we will see in the next section. It’s 
also important because it tells us why normal distributions are 
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so common in the real world; any time we combine many 
different factors into a single number, the result is likely to 
be a normal distribution. For example, the height of any adult 
depends on a complex mixture of their genetics and 
experience; even if those individual contributions may not be 
normally distributed, when we combine them the result is a 
normal distribution. 

Law of Large Numbers 

The law of large numbers simply states that as our sample size 
increases, the probability that our sample mean is an accurate 
representation of the true population mean also increases. It 
is the formal mathematical way to state that larger samples 
are more accurate. The law of large numbers is related to the 
central limit theorem, specifically the formulas for variance and 
standard error. Notice that the sample size appears in the 
denominators of those formulas. A larger denominator in any 
fraction means that the overall value of the fraction gets 
smaller (i.e 1/2 = 0.50, 1/3 – 0.33, 1/4 = 0.25, and so on). Thus, larger 
sample sizes will create smaller standard errors. We already 
know that standard error is the spread of the sampling 
distribution and that a smaller spread creates a narrower 
distribution. Therefore, larger sample sizes create narrower 
sampling distributions, which increases the probability that a 
sample mean will be close to the center and decreases the 
probability that it will be in the tails. This is illustrated in Figures 
6 and 7. 
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Figure 6. Sampling distributions from the same 
population with μ = 50 and σ = 10 but different 
sample sizes (n = 10, n = 30, n = 50, n = 100) 

Figure 7. Relation between sample size and standard error 
for a constant σ = 10 

Using Standard Error for Probability 

We saw in chapter 7 that we can use z-scores to split up a 
normal distribution and calculate the proportion of the area 
under the curve in one of the new regions, giving us the 
probability of randomly selecting a z-score in that range. We 
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can follow the exact sample process for sample means, 
converting them into z-scores and calculating probabilities. 
The only difference is that instead of dividing a raw score by 
the standard deviation, we divide the sample mean by the 
standard error. 

Remember that 

Let’s say we are drawing samples from a population with a 
mean of 50 and standard deviation of 10 (the same values used 
in Figure 6). What is the probability that we get a random 
sample of size 10 with a mean greater than or equal to 55? That 
is, for n = 10, what is the probability that ̅X ≥ 55? First, we need 
to convert this sample mean score into a z-score: 

Z = (55-50) / 10⁄√10 = 5/3.16 = 1.58 
Now we need to shade the area under the 

normal curve corresponding to scores greater than 
z = 1.58 as in Figure 8: 

Chapter 8: Sampling Distributions  |  243



Figure 8: Area under the curve greater than z = 1.58 
Now we go to our z-table and find that the area to the left of z 
= 1.58 is 0.9429. Finally, because we need the area to the right 
(per our shaded diagram), we simply subtract this from 1 to 
get 1.00 – 0.9429 = 0.0571. So, the probability of randomly 
drawing a sample of 10 people from a population with a mean 
of 50 and standard deviation of 10 whose sample mean is 55 or 
more is p = .0571, or 5.71%. Notice that we are talking about 
means that are 55 or more. That is because, strictly speaking, 
it’s impossible to calculate the probability of a score taking on 
exactly 1 value since the “shaded region” would just be a line 
with no area to calculate. 

Now let’s do the same thing, but assume that instead of only 
having a sample of 10 people we took a sample of 50 people. 
First, we find z: 

Z = (55-50)/ 10⁄√50 = 5/1.41 = 3.55 
Then we shade the appropriate region of the normal 

distribution: 
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Figure 9: Area under the curve greater than z = 3.55 
Notice that no region of Figure 5 appears to be shaded. That is 
because the area under the curve that far out into the tail is so 
small that it can’t even be seen (the red line has been added 
to show exactly where the region starts). Thus, we already 
know that the probability must be smaller for N = 50 than N = 
10 because the size of the area (the proportion) is much 
smaller. 
We run into a similar issue when we try to find z = 3.55 on our 
Standard Normal Distribution Table. The table only goes up to 
3.09 because everything beyond that is almost 0 and changes 
so little that it’s not worth printing values. The closest we can 
get is subtracting the largest value, 0.9990, from 1 to get 0.001. 
We know that, technically, the actual probability is smaller 
than this (since 3.55 is farther into the tail than 3.09), so we say 
that the probability is p < 0.001, or less than 0.1%. 
This example shows what an impact sample size can have. 
From the same population, looking for exactly the same thing, 
changing only the sample size took us from roughly a 5% 
chance (or about 1/20 odds) to a less than 0.1% chance (or less 
than 1 in 1000). As the sample size n increased, the standard 
error decreased, which in turn caused the value of z to 
increase, which finally caused the p-value (a term for 
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probability we will use a lot in Unit 2) to decrease. 

You can think of this relation like gears: turning 
the first gear (sample size) clockwise causes the 
next gear (standard error) to turn counterclockwise, 
which causes the third gear (z) to turn clockwise, 
which finally causes the last gear (probability) to 
turn counterclockwise.                                                         
       

Photo credit                                                                           
                                              All of these pieces fit 
together, and the relations will always be the 
same: n↑ σM↓ z↑ p↓                                             

Let’s look at this one more way. For the same population of 
sample size 50 and standard deviation 10, what proportion of 
sample means fall between 47 and 53 if they are of sample size 
10 and sample size 50? 

We’ll start again with n = 10. Converting 47 and 53 into z-scores, 
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we get z = -0.95 and z = 0.95, respectively. From our z-table, 
we find that the proportion between these two scores is 0.6578 
(the process here is left off for the student to practice 
converting X to z and z to proportions). So, 65.78% of sample 
means of sample size 10 will fall between 47 and 53. For n = 50, 
our z-scores for 47 and 53 are ±2.13, which gives us a proportion 
of the area as 0.9668, almost 97%! Shaded regions for each 
of these sampling distributions is displayed in Figure 9. The 
sampling distributions are shown on the original scale, rather 
than as z-scores, so you can see the effect of the shading and 
how much of the body falls into the range, which is marked off 
with dotted line. 

Figure 9. Areas between 47 and 53 for sampling 
distributions of n = 10 and n = 50 

Sampling Distribution, Probability and 
Inference 

We’ve seen how we can use the standard error to determine 
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probability based on our normal curve. We can think of the 
standard error as how much we would naturally expect our 
statistic – be it a mean or some other statistic – to vary. In our 
formula for z based on a sample mean, the numerator (M − μ) 
is what we call an observed effect. That is, it is what we observe 
in our sample mean versus what we expected based on the 
population from which that sample mean was calculated. 

Because the sample mean will naturally move around due to 
sampling error, our observed effect will also change naturally. 
In the context of our formula for z, then, our standard error 
is how much we would naturally expect the observed effect 
to change. Changing by a little is completely normal, but 
changing by a lot might indicate something is going on. This 
is the basis of inferential statistics and the logic behind 
hypothesis testing, the subject of Unit 2. 

Recap 

Earlier we learned that probability forms the direct link 
between samples and the population that they come from. 
This link serves as the foundation for inferential statistics. 

As we learned earlier, the concept of a sampling distribution 
is perhaps the most basic concept in inferential statistics but it 
is also one of the most challenging because we have to accept 
hypothetical concepts and theories about how samples and 
normal distributions work. A few key things to remember are 
that the sample distribution of the means is based on sample 
statistics (sample means) not on individual scores. Second, the 
distribution of sample means is formed by statistics obtained 
by selecting all possible samples of a specific size from a 
population.  The standard error of the mean is used to 
determine how close a sample mean is to a population mean. 
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When we are describing the parameters of a DSM, there are 
a few differences and a few similarities compared to the other 
distributions we have already learned about. 

measure of central 
tendency 

measure of 
variability 

distribution of individual 
scores (sample) M S 

distribution of individual 
scores (population) µ σ 

distribution of sample means M σM 

Learning Objectives 

Having read this chapter, you should be able to: 

• Distinguish between a population and a sample, and 
between population parameters and sample statistics 

• Describe the concepts of sampling error and sampling 
distribution 

• Compute the z-score for distribution of sample means 
• Compute the standard error of the mean 
• Describe how the Central Limit Theorem determines the 

nature of the sampling distribution of the mean 
• Use the distribution of sample means, z-scores, and unit 

normal table to determine probabilities corresponding to 
sample means. 

We have come to the final chapter in this unit. We will now take 
the logic, ideas, and techniques we have developed and put 
them together to see how we can take a sample of data and 
use it to make inferences about what’s truly happening in the 
broader population. This is the final piece of the puzzle that we 
need to understand in order to have the groundwork necessary 
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for formal hypothesis testing. Though some of the concepts 
in this chapter seem strange, they are all simple extensions of 
what we have already learned in previous chapters. 

Exercises – Ch. 8 

1. What is a sampling distribution? 
2. What are the two mathematical facts that describe how 

sampling distributions work? 
3. What is the difference between a sampling distribution 

and a regular distribution? 
4. What effect does sample size have on the shape of a 

sampling distribution? 
5. What is standard error? 
6. For a population with a mean of 75 and a standard 

deviation of 12, what proportion of sample means of size n 
= 16 fall above 82? 

7. For a population with a mean of 100 and standard 
deviation of 16, what is the probability that a random 
sample of size 4 will have a mean between 110 and 130? 

8. Find the z-score for the following means taken from a 
population with mean 10 and standard deviation 2: 

1. ̅X = 8, n = 12 
2. ̅X = 8, n = 30 
3. ̅X = 20, n = 4 
4. ̅X = 20, n = 16 

9. As the sample size increases, what happens to the p-value 
associated with a given sample mean? 

10. For a population with a mean of 35 and standard deviation 
of 7, find the sample mean of size n = 20 that cuts off the 
top 5% of the sampling distribution. 
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Answers to Odd-Numbered Exercises – Ch. 
8 

1. The sampling distribution (or sampling distribution of the 
sample means) is the distribution formed by combining many 
sample means taken from the same population and of a single, 
consistent sample size. 
3. A sampling distribution is made of statistics (e.g. the mean) 
whereas a regular distribution is made of individual scores. 
5. Standard error is the spread of the sampling distribution 
and is the quantification of sampling error. It is how much we 
expect the sample mean to naturally change based on 
random chance. 
7. 10.46% or 0.1046 

9. As sample size increases, the p-value will decrease 
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9.  Chapter 9 
Hypothesis testing 

The first unit was designed to prepare you for hypothesis 
testing. In the first chapter we discussed the three major goals 
of statistics: 

• Describe: connects to unit 1 with descriptive statistics and 
graphing 

• Decide: connects to unit 1 knowing your data and 
hypothesis testing 

• Predict: connects to hypothesis testing and unit 3 

The remaining chapters will cover many different kinds of 
hypothesis tests connected to different inferential statistics. 
Needless to say, hypothesis testing is the central topic of this 
course. This lesson is important but that does not mean the 
same thing as difficult. There is a lot of new language we will 
learn about when conducting a hypothesis test. Some of the 
components of a hypothesis test are the topics we are already 
familiar with: 

• Test statistics 
• Probability 
• Distribution of sample means 

Hypothesis testing is an inferential procedure that uses data 
from a sample to draw a general conclusion about a 
population. It is a formal approach and a statistical method 
that uses sample data to evaluate hypotheses about a 
population. When interpreting a research question and 
statistical results, a natural question arises as to whether the 
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finding could have occurred by chance. Hypothesis testing is 
a statistical procedure for testing whether chance (random 
events) is a reasonable explanation of an experimental finding.
Once you have mastered the material in this lesson you will be 
used to solving hypothesis testing problems and the rest of the 
course will seem much easier. In this chapter, we will introduce 
the ideas behind the use of statistics to make decisions – in 
particular, decisions about whether a particular hypothesis is 
supported by the data. 

Logic and Purpose of Hypothesis Testing 

The statistician Ronald Fisher explained the concept of 
hypothesis testing with a story of a lady tasting tea. Fisher 
was an Australian statistician and is noted as the first person 
to formalize the process of hypothesis testing. His elegantly 
simple “Lady Tasting Tea” experiment demonstrated the logic 
of the hypothesis test. 

Figure 1. A depiction of the lady tasting tea Photo Credit 
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Fisher would often have afternoon tea during his studies. 
He usually took tea with a woman who claimed to be a tea 
expert. In particular, she told Fisher that she could tell which 
was poured first in the tea cup, the milk or the tea, simply 
by tasting the cup. Fisher, being a scientist, decided to put 
this rather bizarre claim to the test. The lady accepted his 
challenge. Fisher brought her 8 cups of tea in succession; 4 
cups would be prepared with the milk added first, and 4 with 
the tea added first. The cups would be presented in a random 
order unknown to the lady. 

The lady would take a sip of each cup as it was presented and 
report which ingredient she believed was poured first. Using 
the laws of probability, Fisher determined the chances of her 
guessing all 8 cups correctly was 1/70, or about 1.4%. In other 
words, if the lady was indeed guessing there was a 1.4% chance 
of her getting all 8 cups correct. On the day of the experiment, 
Fisher had 8 cups prepared just as he had requested. The lady 
drank each cup and made her decisions for each one. 

After the experiment, it was revealed that the lady got all 
8 cups correct! Remember, had she been truly guessing, the 
chance of getting this result was 1.4%. Since this probability was 
so low, Fisher instead concluded that the lady could indeed 
differentiate between the milk or the tea being poured first. 
Fisher’s original hypothesis that she was just guessing was 
demonstrated to be false and was therefore rejected. The 
alternative hypothesis, that the lady could truly tell the cups 
apart, was then accepted as true. 

This story demonstrates many components of hypothesis 
testing in a very simple way. For example, Fisher started with 
a hypothesis that the lady was guessing. He then determined 
that if she was indeed guessing, the probability of guessing all 
8 right was very small, just 1.4%. Since that probability was so 
tiny, when she did get all 8 cups right, Fisher determined it 
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was extremely unlikely she was guessing. A more reasonable 
conclusion was that the lady had the skill to tell the cups apart. 

In hypothesis testing, we will always set up a particular 
hypothesis that we want to demonstrate to be true. We then 
use probability to determine the likelihood of our hypothesis 
is correct. If it appears our original hypothesis was wrong, we 
reject it and accept the alternative hypothesis. The alternative 
hypothesis is usually the opposite of our original hypothesis. 
In Fisher’s case, his original hypothesis was that the lady was 
guessing. His alternative hypothesis was the lady was not 
guessing. 
Let’s consider this with a James Bond twist.  James Bond 
insisted that martinis should be shaken rather than stirred. 
Let’s consider a hypothetical experiment to determine 
whether Mr. Bond can tell the difference between a shaken 
and a stirred martini. Suppose we gave Mr. Bond a series of 16 
taste tests. In each test, we flipped a fair coin to determine 
whether to stir or shake the martini (i.e., random assignment). 
Then we presented the martini to Mr. Bond and asked him to 
decide whether it was shaken or stirred. Let’s say Mr. Bond was 
correct on 13 of the 16 taste tests. Does this prove that Mr. 
Bond has at least some ability to tell whether the martini was 
shaken or stirred? 

This result does not prove that he does; it could be he was just 
lucky and guessed right 13 out of 16 times. But how plausible is 
the explanation that he was just lucky? To assess its plausibility, 
we determine the probability that someone who was just 
guessing would be correct 13/16 times or more. This probability 
can be computed to be 0.0106. This is a pretty low probability, 
and therefore someone would have to be very lucky to be 
correct 13 or more times out of 16 if they were just guessing. 
A low probability gives us more confidence there is evidence 
Bond can tell whether the drink was shaken or stirred. There is 
also still a chance that Mr. Bond was very lucky (more on this 
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later!). The hypothesis that he was guessing is not proven false, 
but considerable doubt is cast on it. Therefore, there is strong 
evidence that Mr. Bond can tell whether a drink was shaken or 
stirred. 

You may notice some patterns here: 

• We have 2 hypotheses: the original (researcher prediction) 
and the alternative 

• We collect data 
• We determine how likley or unlikely the original 

hypothesis is to occur based on probability. 
• We determine if we have enough evidence to support the 

original hypothesis and draw conclusions. 

Now let’s being in some specific terminology: 
Null hypothesis: In general, the null hypothesis, written H0 

(“H-naught”), is the idea that nothing is going on: there is no 
effect of our treatment, no relation between our variables, and 
no difference in our sample mean from what we expected 
about the population mean. The null hypothesis indicates that 
an apparent effect is due to chance. This is always our baseline 
starting assumption, and it is what we (typically) seek to reject. 
For mathematical notation, one uses =). 

Alternative hypothesis: If the null hypothesis is rejected, 
then we will need some other explanation, which we call the 
alternative hypothesis, HA or H1. The alternative hypothesis is 
simply the reverse of the null hypothesis. Thus, our alternative 
hypothesis is the mathematical way of stating our research 
question.  In general, the alternative hypothesis (also called the 
research hypothesis)is there is an effect of treatment, the 
relation between variables, or differences in a sample mean 
compared to a population mean. The alternative hypothesis 
essentially shows evidence the findings are not due to chance. 
It is also called the research hypothesis as this is the most 
common outcome a researcher is looking for: evidence of 

256  |  Chapter 9 Hypothesis testing



change, differences, or relationships. There are three options 
for setting up the alternative hypothesis, depending on where 
we expect the difference to lie. The alternative hypothesis 
always involves some kind of inequality (≠\not equal, >, or <). 

• If we expect a specific direction of change/differences/
relationships, which we call a directional hypothesis, then 
our alternative hypothesis takes the form based on the 
research question itself.  One would expect a decrease in 
depression from taking an anti-depressant as a specific 
directional hypothesis.  Or the direction could be larger, 
where for example, one might expect an increase in exam 
scores after completing a student success exam 
preparation module.  The directional hypothesis (2 
directions) makes up 2 of the 3 alternative hypothesis 
options.  The other alternative is to state there are 
differences/changes, or a relationship but not predict the 
direction.  We use a non-directional alternative 
hypothesis  (typically see ≠ for mathematical notation). 

Probability value (p-value): the probability of a certain 
outcome assuming a certain state of the world. In statistics, 
it is conventional to refer to possible states of the world as 
hypotheses since they are hypothesized states of the world. 
Using this terminology, the probability value is the probability 
of an outcome given the hypothesis. It is not the probability 
of the hypothesis given the outcome. It is very important to 
understand precisely what the probability values mean. In the 
James Bond example, the computed probability of 0.0106 is the 
probability he would be correct on 13 or more taste tests (out of 
16) if he were just guessing. It is easy to mistake this probability 
of 0.0106 as the probability he cannot tell the difference. This 
is not at all what it means. The probability of 0.0106 is the 
probability of a certain outcome (13 or more out of 16) assuming 
a certain state of the world (James Bond was only guessing). 
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A low probability value casts doubt on the null hypothesis. 
How low must the probability value be in order to conclude 
that the null hypothesis is false? Although there is clearly no 
right or wrong answer to this question, it is conventional to 
conclude the null hypothesis is false if the probability value is 
less than 0.05 (p < .05). More conservative researchers conclude 
the null hypothesis is false only if the probability value is less 
than 0.01 (p<.01). When a researcher concludes that the null 
hypothesis is false, the researcher is said to have rejected the 
null hypothesis. The probability value below which the null 
hypothesis is rejected is called the α level or simply α (“alpha”). It 
is also called the significance level. If α is not explicitly specified, 
assume that α = 0.05. 

Decision-making is part of the process and we have some 
language that goes along with that. Importantly, null 
hypothesis testing operates under the assumption that the 
null hypothesis is true unless the evidence shows otherwise.
We (typically) seek to reject the null hypothesis, giving us 
evidence to support the alternative hypothesis.  If the 
probability of the outcome given the hypothesis is sufficiently 
low, we have evidence that the null hypothesis is false. Note 
that all probability calculations for all hypothesis tests center 
on the null hypothesis. In the James Bond example, the null 
hypothesis is that he cannot tell the difference between 
shaken and stirred martinis. The probability value is low that 
one is able to identify 13 of 16 martinis as shaken or stirred 
(0.0106), thus providing evidence that he can tell the difference. 
Note that we have not computed the probability that he can 
tell the difference. 

The specific type of hypothesis testing reviewed is 
specifically known as null hypothesis statistical testing (NHST). 
We can break the process of null hypothesis testing down into 
a number of steps a researcher would use. 

• Formulate a hypothesis that embodies our prediction 
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(before seeing the data) 
• Specify null and alternative hypotheses 
• Collect some data relevant to the hypothesis 
• Compute a test statistic 
• Identify the criteria probability (or compute the probability 

of the observed value of that statistic) assuming that the 
null hypothesis is true 

• Drawing conclusions. Assess the “statistical significance” 
of the result 

Steps in hypothesis testing 

Let’s consider another example as we set up some more 
formal steps for hypothesis testing that we will use 
throughout the semester. An experiment was done to 
determine whether physicians spend less time with obese 
patients, we will refer to the study as Physicians’ Reactions. 
Physicians were sampled randomly and each was shown a 
chart of a patient complaining of a migraine headache. They 
were then asked to estimate how long they would spend with 
the patient. The charts were identical except that for half the 
charts, the patient was obese and for the other half, the 
patient was of average weight. The chart a particular physician 
viewed was determined randomly. Thirty-three physicians 
viewed charts of average-weight patients and 38 physicians 
viewed charts of obese patients. 
Identify some key aspects of the study design: it is an 
experiment with 2 levels or groups in the independent 
variable (IV) and random assignment was used to place 
physicians into only 1 level/group/condition. IV has 2 categories 
and is classified as a nominal scale of measurement. The 
outcome variable being examined is the dependent variable 
(DV), which is estimated minutes to examine the medical 
chart.  Minutes can be classified as a ratio scale of 
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measurement. 

Step 1: Formulate a hypothesis of interest 

The researchers hypothesized that physicians spend less time 
with obese patients. The researchers hypothesis derived from 
an identified population. In creating a research hypothesis, we 
also have to decide whether we want to test a directional or 
non-directional hypotheses. Researchers typically will select a 
non-directional hypothesis for a more conservative approach, 
particularly when the outcome is unknown (more about why 
this is later). 

Step 2: Specify the null and alternative 
hypotheses 

Can you set up the null and alternative hypotheses for the 
Physician’s Reaction Experiment? 
In the Physicians’ Reactions example, the null hypothesis is 
that in the population of physicians, the mean time expected 
to be spent with obese patients is equal to the mean time 
expected to be spent with average-weight patients. This null 
hypothesis can be written as: H0:μobese – μaverage = 0. 
In the Physicians’ Reactions example, the alternative 
hypothesis is that in the population of physicians, the mean 
time expected to be spent with obese patients is equal to the 
mean time expected to be spent with average-weight 
patients. This null hypothesis can be written as: H1: μobese – 
μaverage ≠ 0. Again, it is more common to take a non-
directional approach.  However, if there was previous research 
or evidence for physicians spending less time with obese 
patients, the alternative hypothesis could be written as: H1: 
μobese – μaverage < 0. 
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A reminder that in setting up hypotheses, you will see 
parameters (μ for mean) used in hypotheses as we are 
interested in understanding the population, not just our 
sample. 

Step 3: Determine the alpha level. 

For this course, alpha will be given to you as .05 or .01. 
Researchers will decide on alpha and then determine the 
associated test statistic based from the sample. Researchers 
in the Physician Reaction study might set the alpha at .05 
and identify the test statistics associated with the .05 for the 
sample size.  Researchers might take extra precautions to be 
more confident in their findings (more on this later). 

Step 4: Collect some data 

For this course, the data will be given to you.  Researchers 
collect the data and then start to summarize it using 
descriptive statistics. The mean time physicians reported that 
they would spend with obese patients was 24.7 minutes as 
compared to a mean of 31.4 minutes for normal-weight 
patients. 

Step 5: Compute a test statistic 

We next want to use the data to compute a statistic that will 
ultimately let us decide whether the null hypothesis is rejected 
or not. We can think of the test statistic as providing a measure 
of the size of the effect compared to the variability in the data. 
In general, this test statistic will have a probability distribution 
associated with it, because that allows us to determine how 
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likely our observed value of the statistic is under the null 
hypothesis. 

To assess the plausibility of the hypothesis that the difference 
in mean times is due to chance, we compute the probability 
of getting a difference as large or larger than the observed 
difference (31.4 – 24.7 = 6.7 minutes) if the difference were, in 
fact, due solely to chance. 

Step 6: Determine the probability of the 
observed result under the null hypothesis 

Using methods presented in later chapters, this probability 
associated with the observed differences between the two 
groups for the Physician’s Reaction was computed to be 
0.0057. Since this is such a low probability, we have confidence 
that the difference in times is due to the patient’s weight 
(obese or not) (and is not due to chance). We can then reject 
the null hypothesis (there are no differences or differences seen 
are due to chance). 

Keep in mind that the null hypothesis is typically the 
opposite of the researcher’s hypothesis. In the Physicians’ 
Reactions study, the researchers hypothesized that physicians 
would expect to spend less time with obese patients. The null 
hypothesis that the two types of patients are treated identically 
as part of the researcher’s control of other variables. If the null 
hypothesis were true, a difference as large or larger than the 
sample difference of 6.7 minutes would be very unlikely to 
occur. Therefore, the researchers rejected the null hypothesis of 
no difference and concluded that in the population, physicians 
intend to spend less time with obese patients. 

This is the step where NHST starts to violate our intuition. 
Rather than determining the likelihood that the null 
hypothesis is true given the data, we instead determine the 
likelihood under the null hypothesis of observing a statistic at 
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least as extreme as one that we have observed — because we 
started out by assuming that the null hypothesis is true! To 
do this, we need to know the expected probability distribution 
for the statistic under the null hypothesis, so that we can ask 
how likely the result would be under that distribution. This will 
be determined from a table we use for reference or calculated 
in a statistical analysis program. Note that when I say “how 
likely the result would be”, what I really mean is “how likely the 
observed result or one more extreme would be”. We need to 
add this caveat as we are trying to determine how weird our 
result would be if the null hypothesis were true, and any result 
that is more extreme will be even more weird, so we want to 
count all of those weirder possibilities when we compute the 
probability of our result under the null hypothesis. 

Let’s review some considerations for Null 
hypothesis statistical testing (NHST)! 

Null hypothesis statistical testing (NHST) is 
commonly used in many fields. If you pick up 
almost any scientific or biomedical research 
publication, you will see NHST being used to test 
hypotheses, and in their introductory psychology 
textbook, Gerrig & Zimbardo (2002) referred to NHST 
as the “backbone of psychological research”. Thus, 
learning how to use and interpret the results from 
hypothesis testing is essential to understand the 
results from many fields of research. 

It is also important for you to know, however, that 
NHST is flawed, and that many statisticians and 
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researchers think that it has been the cause of 
serious problems in science, which we will discuss in 
further in this unit. NHST is also widely 
misunderstood, largely because it violates our 
intuitions about how statistical hypothesis testing 
should work. Let’s look at an example to see this. 

There is great interest in the use of body-worn 
cameras by police officers, which are thought to 
reduce the use of force and improve officer 
behavior. However, in order to establish this we need 
experimental evidence, and it has become 
increasingly common for governments to use 
randomized controlled trials to test such ideas. A 
randomized controlled trial of the effectiveness of 
body-worn cameras was performed by the 
Washington, DC government and DC Metropolitan 
Police Department in 2015-2016. Officers were 
randomly assigned to wear a body-worn camera or 
not, and their behavior was then tracked over time 
to determine whether the cameras resulted in less 
use of force and fewer civilian complaints about 
officer behavior. 

Before we get to the results, let’s ask how you 
would think the statistical analysis might work. Let’s 
say we want to specifically test the hypothesis of 
whether the use of force is decreased by the 
wearing of cameras. The randomized controlled trial 
provides us with the data to test the hypothesis – 
namely, the rates of use of force by officers assigned 
to either the camera or control groups. The next 
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obvious step is to look at the data and determine 
whether they provide convincing evidence for or 
against this hypothesis. That is: What is the 
likelihood that body-worn cameras reduce the use 
of force, given the data and everything else we 
know? 

It turns out that this is not how null hypothesis 
testing works. Instead, we first take our hypothesis 
of interest (i.e. that body-worn cameras reduce use 
of force), and flip it on its head, creating a null 
hypothesis – in this case, the null hypothesis would 
be that cameras do not reduce use of force. 
Importantly, we then assume that the null 
hypothesis is true. We then look at the data, and 
determine how likely the data would be if the null 
hypothesis were true. If the data are sufficiently 
unlikely under the null hypothesis that we can reject 
the null in favor of the alternative hypothesis which 
is our hypothesis of interest. If there is not sufficient 
evidence to reject the null, then we say that we 
retain (or “fail to reject”) the null, sticking with our 
initial assumption that the null is true. 

Understanding some of the concepts of NHST, 
particularly the notorious “p-value”, is invariably 
challenging the first time one encounters them, 
because they are so counter-intuitive. As we will see 
later, there are other approaches that provide a 
much more intuitive way to address hypothesis 
testing (but have their own complexities). 
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Step 7: Assess the “statistical significance” of the result. Draw 
conclusions. 

The next step is to determine whether the p-value that 
results from the previous step is small enough that we are 
willing to reject the null hypothesis and conclude instead that 
the alternative is true. In the Physicians Reactions study, the 
probability value is 0.0057. Therefore, the effect of obesity is 
statistically significant and the null hypothesis that obesity 
makes no difference is rejected. It is very important to keep 
in mind that statistical significance means only that the null 
hypothesis of exactly no effect is rejected; it does not mean 
that the effect is important, which is what “significant” usually 
means. When an effect is significant, you can have confidence 
the effect is not exactly zero. Finding that an effect is significant 
does not tell you about how large or important the effect is. 

How much evidence do we require and what considerations 
are needed to better understand the significance of the 
findings? This is one of the most controversial questions in 
statistics, in part because it requires a subjective judgment – 
there is no “correct” answer. 

What does a statistically significant result 
mean? 

There is a great deal of confusion about what p-values actually 
mean (Gigerenzer, 2004). Let’s say that we do an experiment 
comparing the means between conditions, and we find a 
difference with a p-value of .01. There are a number of possible 
interpretations that one might entertain. 

Does it mean that the probability of the null hypothesis being 
true is .01? No. Remember that in null hypothesis testing, the p-
value is the probability of the data given the null hypothesis. It 
does not warrant conclusions about the probability of the null 
hypothesis given the data. 
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Does it mean that the probability that you are making the 
wrong decision is .01? No. Remember as above that p-values 
are probabilities of data under the null, not probabilities of 
hypotheses. 

Does it mean that if you ran the study again, you would obtain 
the same result 99% of the time? No. The p-value is a statement 
about the likelihood of a particular dataset under the null; it 
does not allow us to make inferences about the likelihood of 
future events such as replication. 

Does it mean that you have found a practially important effect? 
No. There is an essential distinction between statistical 
significance and practical significance. As an example, let’s say 
that we performed a randomized controlled trial to examine 
the effect of a particular diet on body weight, and we find a 
statistically significant effect at p<.05. What this doesn’t tell 
us is how much weight was actually lost, which we refer to 
as the effect size (to be discussed in more detail). If we think 
about a study of weight loss, then we probably don’t think that 
the loss of one ounce (i.e. the weight of a few potato chips) 
is practically significant. Let’s look at our ability to detect a 
significant difference of 1 ounce as the sample size increases. 

A statistically significant result is not necessarily a strong one. 
Even a very weak result can be statistically significant if it is 
based on a large enough sample. This is why it is important to 
distinguish between the statistical significance of a result and 
the practical significance of that result. Practical significance 
refers to the importance or usefulness of the result in some 
real-world context and is often referred to as the effect size. 

Many differences are statistically significant—and may even 
be interesting for purely scientific reasons—but they are not 
practically significant. In clinical practice, this same concept 
is often referred to as “clinical significance.” For example, a 
study on a new treatment for social phobia might show that it 
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produces a statistically significant positive effect. Yet this effect 
still might not be strong enough to justify the time, effort, 
and other costs of putting it into practice—especially if easier 
and cheaper treatments that work almost as well already exist. 
Although statistically significant, this result would be said to 
lack practical or clinical significance. 

Be aware that the term effect size can be misleading because 
it suggests a causal relationship—that the difference between 
the two means is an “effect” of being in one group or condition 
as opposed to another. In other words, simply calling the 
difference an “effect size” does not make the relationship a 
causal one. 

Figure 1 shows how the proportion of significant results 
increases as the sample size increases, such that with a very 
large sample size (about 262,000 total subjects), we will find 
a significant result in more than 90% of studies when there is 
a 1 ounce difference in weight loss between the diets. While 
these are statistically significant, most physicians would not 
consider a weight loss of one ounce to be practically or 
clinically significant. We will explore this relationship in more 
detail when we return to the concept of statistical power in 
Chapter X, but it should already be clear from this example that 
statistical significance is not necessarily indicative of practical 
significance. 
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Figure 1: The proportion of significant results for a very small 
change (1 ounce, which is about .001 standard deviations) as a 
function of sample size. 

Challenges with using p-values 

Historically, the most common answer to this question has 
been that we should reject the null hypothesis if the p-value is 
less than 0.05. This comes from the writings of Ronald Fisher, 
who has been referred to as “the single most important figure 
in 20th century statistics” (Efron, 1998): 

“If P is between .1 and .9 there is certainly no reason 
to suspect the hypothesis tested. If it is below .02 it is 
strongly indicated that the hypothesis fails to account 
for the whole of the facts. We shall not often be astray 
if we draw a conventional line at .05 … it is convenient 
to draw the line at about the level at which we can 
say: Either there is something in the treatment, or a 
coincidence has occurred such as does not occur more 
than once in twenty trials” (Fisher, 1925) 

Fisher never intended p<0.05p < 0.05 to be a fixed rule: 
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“no scientific worker has a fixed level of significance at 
which from year to year, and in all circumstances, he 
rejects hypotheses; he rather gives his mind to each 
particular case in the light of his evidence and his ideas” 
(Fisher, 1956) 

Instead, it is likely that p < .05 became a ritual due to the 
reliance upon tables of p-values that were used before 
computing made it easy to compute p values for arbitrary 
values of a statistic. All of the tables had an entry for 0.05, 
making it easy to determine whether one’s statistic exceeded 
the value needed to reach that level of significance. Although 
we use tables in this class, statistical software examines the 
specific probability value for the calculated statistic. 

Assessing Error Rate: Type I and Type II Error 

Although there are challenges with p-values for decision 
making, we will examine a way we can think about hypothesis 
testing in terms of its error rate.  This was proposed by Jerzy 
Neyman and Egon Pearson: 

“no test based upon a theory of probability can by itself 
provide any valuable evidence of the truth or falsehood 
of a hypothesis. But we may look at the purpose of tests 
from another viewpoint. Without hoping to know 
whether each separate hypothesis is true or false, we 
may search for rules to govern our behaviour with 
regard to them, in following which we insure that, in 
the long run of experience, we shall not often be wrong” 
(Neyman & Pearson, 1933) 

That is: We can’t know which specific decisions are right or 
wrong, but if we follow the rules, we can at least know how 
often our decisions will be wrong in the long run. 
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To understand the decision-making framework that Neyman 
and Pearson developed, we first need to discuss statistical 
decision-making in terms of the kinds of outcomes that can 
occur. There are two possible states of reality (H0 is true, or H0 is 
false), and two possible decisions (reject H0, or retain H0). There 
are two ways in which we can make a correct decision: 

• We can reject H0 when it is false (in the language of signal 
detection theory, we call this a hit) 

• We can retain H0 when it is true (somewhat confusingly in 
this context, this is called a correct rejection) 

There are also two kinds of errors we can make: 

• We can reject H0 when it is actually true (we call this a 
false alarm, or Type I error), Type I error means that we 
have concluded that there is a relationship in the 
population when in fact there is not. Type I errors occur 
because even when there is no relationship in the 
population, sampling error alone will occasionally produce 
an extreme result. 

• We can retain H0 when it is actually false (we call this a 
miss, or Type II error). Type II error means that we have 
concluded that there is no relationship in the population 
when in fact there is. 

Summing up, when you perform a hypothesis test, there are 
four possible outcomes depending on the actual truth (or 
falseness) of the null hypothesis H0 and the decision to reject 
or not. The outcomes are summarized in the following table: 

ACTION H0 IS ACTUALLY 

True False 

Do not reject H0 Correct Outcome Type II error 

Reject H0 Type I Error Correct Outcome 
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Table 1. The four possible outcomes in hypothesis testing. 

1. The decision is not to reject H0 when H0 is true (correct 
decision). 

2. The decision is to reject H0 when H0 is true (incorrect 
decision known as a Type I error). 

3. The decision is not to reject H0 when, in fact, H0 is false
(incorrect decision known as a Type II error). 

4. The decision is to reject H0 when H0 is false (correct 
decision). 

Neyman and Pearson coined two terms to describe the 
probability of these two types of errors in the long run: 

• P(Type I error) = α\alpha 
• P(Type II error) = β\beta 

That is, if we set α\alpha to .05, then in the long run we should 
make a Type I error 5% of the time. The ⯑ (alpha), is associated 
with the p-value for the level of significance. Again it’s common 
to set α\alpha as .05. In fact, when the null hypothesis is true 
and α is .05, we will mistakenly reject the null hypothesis 5% of 
the time. (This is why α is sometimes referred to as the “Type 
I error rate.”) In principle, it is possible to reduce the chance of 
a Type I error by setting α to something less than .05. Setting 
it to .01, for example, would mean that if the null hypothesis is 
true, then there is only a 1% chance of mistakenly rejecting it. 
But making it harder to reject true null hypotheses also makes 
it harder to reject false ones and therefore increases the chance 
of a Type II error. 

In practice, Type II errors occur primarily because the 
research design lacks adequate statistical power to detect the 
relationship (e.g., the sample is too small).  Statistical power 
is the complement of Type II error. We will have more to say 
about statistical power shortly. The standard value for an 
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acceptable level of β (beta) is .2 – that is, we are willing to accept 
that 20% of the time we will fail to detect a true effect when it 
truly exists. It is possible to reduce the chance of a Type II error 
by setting α to something greater than .05 (e.g., .10). But making 
it easier to reject false null hypotheses also makes it easier to 
reject true ones and therefore increases the chance of a Type I 
error. This provides some insight into why the convention is to 
set α to .05. There is some agreement among researchers that 
level of α keeps the rates of both Type I and Type II errors at 
acceptable levels. 

The possibility of committing Type I and Type II errors has 
several important implications for interpreting the results of 
our own and others’ research. One is that we should be 
cautious about interpreting the results of any individual study 
because there is a chance that it reflects a Type I or Type II 
error. This is why researchers consider it important to replicate 
their studies. Each time researchers replicate a study and find 
a similar result, they rightly become more confident that the 
result represents a real phenomenon and not just a Type I or 
Type II error. 

Test Statistic Assumptions 

Last consideration we will revisit with each test statistic (e.g., 
t-test, z-test and ANOVA) in the coming chapters.  There are 
four main assumptions. These assumptions are often taken for 
granted in using prescribed data for the course.  In the real 
world, these assumptions would need to be examined, often 
tested using statistical software. 

1. Assumption of random sampling. A sample is random 
when each person (or animal) point in your population has 
an equal chance of being included in the sample; 
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therefore selection of any individual happens by chance, 
rather than by choice. This reduces the chance that 
differences in materials, characteristics or conditions may 
bias results. Remember that random samples are more 
likely to be representative of the population so researchers 
can be more confident interpreting the results. Note: there 
is no test that statistical software can perform which 
assures random sampling has occurred but following 
good sampling techniques helps to ensure your samples 
are random. 

2. Assumption of Independence. Statistical independence is 
a critical assumption for many statistical tests including 
the 2-sample t-test and ANOVA. It is assumed that 
observations are independent of each other often but 
often this assumption. Is not met. Independence means 
the value of one observation does not influence or affect 
the value of other observations. Independent data items 
are not connected with one another in any way (unless 
you account for it in your study). Even the smallest 
dependence in your data can turn into heavily biased 
results (which may be undetectable) if you violate this 
assumption. Note: there is no test statistical software can 
perform that assures independence of the data because 
this should be addressed during the research planning 
phase. Using a non-parametric test is often recommended 
if a researcher is concerned this assumption has been 
violated. 

3. Assumption of Normality. Normality assumes that the 
continuous variables (dependent variable) used in the 
analysis are normally distributed. Normal distributions are 
symmetric around the center (the mean) and form a bell-
shaped distribution. Normality is violated when sample 
data are skewed. With large enough sample sizes (n > 30) 
the violation of the normality assumption should not 
cause major problems (remember the central limit 
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theorem) but there is a feature in most statistical software 
that can alert researchers to an assumption violation. 

4. Assumption of Equal Variance. Variance refers to the 
spread or of scores from the mean. Many statistical tests 
assume that although different samples can come from 
populations with different means, they have the same 
variance. Equality of variance (i.e., homogeneity of 
variance) is violated when variances across different 
groups or samples are significantly different. Note: there is 
a feature in most statistical software to test for this. 

Recap 

We will use 4 main steps for hypothesis testing: 

1. Begin with two hypotheses. Write a null hypothesis and 
alternative hypothesis about the populations. 

1. Usually the hypotheses concern population 
parameters and predict the characteristics that a 
sample should have 

2. The hypotheses are contradictory 

1. Null: Null hypothesis (H0) states that there is no 
difference, no effect or no change between 
population means and sample means. There is no 
difference. 

2. Alternative: Alternative hypothesis (H1 or HA) 
states that there is a difference or a change 
between the population and sample. It is the 
opposite of the null hypothesis. 

2. Set criteria for a decision. In this step we must determine 
the boundary of our distribution at which the null 
hypothesis will be rejected. Researchers usually use either 
a 5% (.05) cutoff or 1% (.01) critical boundary. Recall from 
our earlier story about Ronald Fisher that the lower the 
probability the more confident the was that the Tea Lady 
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was not guessing.  We will apply this to z in the next 
chapter. 

3. Sample data are collected and analyzed by performing 
statistics (calculations) 

1. Compare sample and population to decide if the 
hypothesis has support 

4. Make a decision and provide an explanation 

1. When a researcher uses hypothesis testing, the 
individual is making a decision about whether the 
data collected is sufficient to state that the population 
parameters are significantly different. 

Further considerations 
1. The probability value is the probability of a result as extreme 

or more extreme given that the null hypothesis is true. It is the 
probability of the data given the null hypothesis. It is not the 
probability that the null hypothesis is false. 

2. A low probability value indicates that the sample outcome 
(or one more extreme) would be very unlikely if the null 
hypothesis were true. We will learn more about assessing effect 
size later in this unit. 

3.  A non-significant outcome means that the data do not 
conclusively demonstrate that the null hypothesis is false. 
There is always a chance of error and 4 outcomes associated 
with hypothesis testing. 
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4. It is important to take into account the assumptions for 
each test statistic. 

 

Learning objectives 

Having read the chapter, you should be able to: 

• Identify the components of a hypothesis test, including 
the parameter of interest, the null and alternative 
hypotheses, and the test statistic. 

• State the hypotheses and identify appropriate critical 
areas depending on how hypotheses are set up. 

• Describe the proper interpretations of a p-value as well as 
common misinterpretations. 

• Distinguish between the two types of error in hypothesis 
testing, and the factors that determine them. 

• Describe the main criticisms of null hypothesis statistical 
testing 

• Identify the purpose of effect size and power. 
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Exercises – Ch. 9 

1. In your own words, explain what the null hypothesis is. 
2. What are Type I and Type II Errors? 
3. What is α? 
4. Why do we phrase null and alternative hypotheses with 

population parameters and not sample means? 
5. If our null hypothesis is “H0: μ = 40”, what are the three 

possible alternative hypotheses? 
6. Why do we state our hypotheses and decision criteria 

before we collect our data? 
7. When and why do you calculate an effect size? 

Answers to Odd- Numbered Exercises – Ch. 
9 

1. Your answer should include mention of the baseline 
assumption of no difference between the sample and the 
population. 

3. Alpha is the significance level. It is the criteria we use when 
decided to reject or fail to reject the null hypothesis, 
corresponding to a given proportion of the area under the 
normal distribution and a probability of finding extreme scores 
assuming the null hypothesis is true. 

5. μ > 40; μ < 40; μ ≠ 40 
7. We calculate effect size to determine the strength of the 

finding.  Effect size should always be calculated when the we 
have rejected the null hypothesis.  Effect size can be calculated 
for non-significant findings as a possible indicator of Type II 
error. 
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10.  Chapter 10: 
Hypothesis Testing 
with Z 

This chapter lays out the basic logic and process of hypothesis 
testing using a z. We will perform a test statistics using z, we 
use the z formula from chapter 8 and data from a sample 
mean to make an inference about a population. 

Setting up the hypotheses 

When setting up the hypotheses with z, the parameter is 
associated with a sample mean (in the previous chapter 
examples the parameters for the null used 0). Using z is an 
occasion in which the null hypothesis is a value other than 0. 
For example, if we are working with mothers in the U.S. whose 
children are at risk of low birth weight, we can use 7.47 pounds, 
the average birth weight in the US, as our null value and test 
for differences against that. For now, we will focus on testing 
a value of a single mean against what we expect from the 
population. 

Using birthweight as an example, our null hypothesis takes the 
form: H0: μ = 7.47 Notice that we are testing the value for μ, the 
population parameter, NOT the sample statistic ̅X (or M). We 
are referring to the data right now in raw form (we have not 
standardized it using z yet). Again, using inferential statistics, 
we are interested in understanding the population, drawing 
from our sample observations. For the research question, we 
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have a mean value from the sample to use, we have specific 
data is – it is observed and used as a comparison for a set point. 

As mentioned earlier, the alternative hypothesis is simply the 
reverse of the null hypothesis, and there are three options, 
depending on where we expect the difference to lie. We will 
set the criteria for rejecting the null hypothesis based on the 
directionality (greater than, less than, or not equal to) of the 
alternative. 

If we expect our obtained sample mean to be above or below 
the null hypothesis value (knowing which direction), we set a
directional hypothesis. Our alternative hypothesis takes the 
form based on the research question itself. In our example with 
birthweight, this could be presented as HA: μ > 7.47 or HA: μ < 
7.47. 

Note that we should only use a directional hypothesis if we 
have a good reason, based on prior observations or research, 
to suspect a particular direction. When we do not know the 
direction, such as when we are entering a new area of research, 
we use a non-directional alternative hypothesis. In our 
birthweight example, this could be set as HA: μ ≠ 7.47 

In working with data for this course we will need to set a critical 
value of the test statistic for alpha (α) for use of test statistic 
tables in the back of the book. This is determining the critical 
rejection region that has a set critical value based on α. 

Determining Critical Value from α 

We set alpha (α) before collecting data in order to determine 
whether or not we should reject the null hypothesis. We set 
this value beforehand to avoid biasing ourselves by viewing 
our results and then determining what criteria we should use. 
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When a research hypothesis predicts an effect but does not 
predict a direction for the effect, it is called a non-directional 
hypothesis. To test the significance of a non-directional 
hypothesis, we have to consider the possibility that the sample 
could be extreme at either tail of the comparison distribution. 
We call this a two-tailed test. 

Figure 1. showing a 2-tail test for non-directional hypothesis 
for z for area C is the critical rejection region. 

When a research hypothesis predicts a direction for the effect, 
it is called a directional hypothesis. To test the significance of a 
directional hypothesis, we have to consider the possibility that 
the sample could be extreme at one-tail of the comparison 
distribution. We call this a one-tailed test. 

Figure 2. showing a 1-tail test for a directional hypothesis 
(predicting an increase) for z for area C is the critical rejection 
region. 

Determining Cutoff Scores with Two-Tailed Tests 
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Typically we specify an α level before analyzing the data. If the 
data analysis results in a probability value below the α level, 
then the null hypothesis is rejected; if it is not, then the null 
hypothesis is not rejected. In other words, if our data produce 
values that meet or exceed this threshold, then we have 
sufficient evidence to reject the null hypothesis; if not, we fail 
to reject the null (we never “accept” the null). According to this 
perspective, if a result is significant, then it does not matter 
how significant it is. Moreover, if it is not significant, then it does 
not matter how close to being significant it is. Therefore, if the 
0.05 level is being used, then probability values of 0.049 and 
0.001 are treated identically. Similarly, probability values of 0.06 
and 0.34 are treated identically. Note we will discuss ways to 
address effect size (which is related to this challenge of NHST). 

When setting the probability value, there is a special 
complication in a two-tailed test. We have to divide the 
significance percentage between the two tails. For example, 
with a 5% significance level, we reject the null hypothesis only 
if the sample is so extreme that it is in either the top 2.5% or 
the bottom 2.5% of the comparison distribution. This keeps the 
overall level of significance at a total of 5%. A one-tailed test 
does have such an extreme value but with a one-tailed test only 
one side of the distribution is considered. 

Figure 3. Critical value differences in one and two-tail tests. 
Photo Credit 
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Let’s review the set critical values for Z. 

We discussed z-scores and probability in chapter 
8.  If we revisit the z-score for 5% and 1%, we can 
identify the critical regions for the critical rejection 
areas from the unit standard normal table. 

• A two-tailed test at the 5% level has a critical 
boundary Z score of +1.96 and -1.96 

• A one-tailed test at the 5% level has a critical 
boundary Z score of +1.64 or -1.64 

• A two-tailed test at the 1% level has a critical 
boundary Z score of +2.58 and -2.58 

• A one-tailed test at the 1% level has a critical 
boundary Z score of +2.33 or -2.33. 

Review: Critical values, p-values, and 
significance level 

There are two criteria we use to assess whether our 
data meet the thresholds established by our chosen 
significance level, and they both have to do with our 
discussions of probability and distributions. Recall 
that probability refers to the likelihood of an event, 
given some situation or set of conditions. In 
hypothesis testing, that situation is the assumption 
that the null hypothesis value is the correct value, 
or that there is no effect. The value laid out in H0 is 
our condition under which we interpret our results. 
To reject this assumption, and thereby reject the 
null hypothesis, we need results that would be very 
unlikely if the null was true. 
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Now recall that values of z which fall in the tails of 
the standard normal distribution represent unlikely 
values. That is, the proportion of the area under the 
curve as or more extreme than z is very small as 
we get into the tails of the distribution. Our 
significance level corresponds to the area under the 
tail that is exactly equal to α: if we use our normal 
criterion of α = .05, then 5% of the area under the 
curve becomes what we call the rejection region 
(also called the critical region) of the distribution. 
This is illustrated in Figure 4. 

Figure 4: The rejection region for a one-tailed test 
The shaded rejection region takes us 5% of the 

area under the curve. Any result which falls in 
that region is sufficient evidence to reject the 
null hypothesis. 

The rejection region is bounded by a specific z-
value, as is any area under the curve. In hypothesis 
testing, the value corresponding to a specific 
rejection region is called the critical value, zcrit (“z-
crit”) or z* (hence the other name “critical region”). 
Finding the critical value works exactly the same 
as finding the z-score corresponding to any area 
under the curve like we did in Unit 1. If we go to 
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the normal table, we will find that the z-score 
corresponding to 5% of the area under the curve is 
equal to 1.645 (z = 1.64 corresponds to 0.0405 and 
z = 1.65 corresponds to 0.0495, so .05 is exactly in 
between them) if we go to the right and -1.645 if 
we go to the left. The direction must be determined 
by your alternative hypothesis, and drawing then 
shading the distribution is helpful for keeping 
directionality straight. 

Suppose, however, that we want to do a non-
directional test. We need to put the critical region in 
both tails, but we don’t want to increase the overall 
size of the rejection region (for reasons we will see 
later). To do this, we simply split it in half so that an 
equal proportion of the area under the curve falls in 
each tail’s rejection region. For α = .05, this means 
2.5% of the area is in each tail, which, based on the z-
table, corresponds to critical values of z* = ±1.96. This 
is shown in Figure 5. 

Figure 5: Two-tailed rejection region 
Thus, any z-score falling outside ±1.96 (greater than 

1.96 in absolute value) falls in the rejection region. 
When we use z-scores in this way, the obtained value 
of z (sometimes called z-obtained) is something 
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known as a test statistic, which is simply an inferential 
statistic used to test a null hypothesis. 

Calculate the test statistic: Z 

Now that we understand setting up the hypothesis and 
determining the outcome, let’s examine hypothesis testing 
with z!  The next step is to carry out the study and get the 
actual results for our sample. Central to hypothesis test is 
comparison of the population and sample means. To make 
our calculation and determine where the sample is in the 
hypothesized distribution we calculate the Z for the sample 
data. 

 
Make a decision 

To decide whether to reject the null hypothesis, we compare 
our sample’s Z score to the Z score that marks our critical 
boundary. If our sample Z score falls inside the rejection region 
of the comparison distribution (is greater than the z-score 
critical boundary) we reject the null hypothesis. 

 
The formula for our z- statistic has not changed: 

where 

To formally test our hypothesis, we compare our obtained z-
statistic to our critical z-value. If zobt > zcrit, that means it falls 
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in the rejection region (to see why, draw a line for z = 2.5 on 
Figure 1 or Figure 2) and so we reject H0. If zobt < zcrit, we fail to 
reject. Remember that as z gets larger, the corresponding area 
under the curve beyond z gets smaller. Thus, the proportion, 
or p-value, will be smaller than the area for α, and if the area 
is smaller, the probability gets smaller. Specifically, the 
probability of obtaining that result, or a more extreme result, 
under the condition that the null hypothesis is true gets 
smaller. 
The z-statistic is very useful when we are doing our 
calculations by hand. However, when we use computer 
software, it will report to us a p-value, which is simply the 
proportion of the area under the curve in the tails beyond our 
obtained z-statistic. We can directly compare this p-value to α 
to test our null hypothesis: if p < α, we reject H0, but if p > α, we 
fail to reject. Note also that the reverse is always true: if we use 
critical values to test our hypothesis, we will always know if p is 
greater than or less than α. If we reject, we know that p < α 
because the obtained z-statistic falls farther out into the tail 
than the critical z-value that corresponds to α, so the 
proportion (p-value) for that z-statistic will be smaller. 

Conversely, if we fail to reject, we know that the proportion will 
be larger than α because the z-statistic will not be as far into 
the tail. This is illustrated for a one- tailed test in Figure 6. 
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Figure 6. Relation between α, zobt, and p 
When the null hypothesis is rejected, the effect is said to be 

statistically significant. Do not confuse statistical significance 
with practical significance. A small effect can be highly 
significant if the sample size is large enough. 

Why does the word “significant” in the phrase “statistically 
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significant” mean something so different from other uses of 
the word? Interestingly, this is because the meaning of 
“significant” in everyday language has changed. It turns out 
that when the procedures for hypothesis testing were 
developed, something was “significant” if it signified 
something. Thus, finding that an effect is statistically 
significant signifies that the effect is real and not due to 
chance. Over the years, the meaning of “significant” changed, 
leading to the potential misinterpretation. 

Review: Steps of the Hypothesis Testing 
Process 

The process of testing hypotheses follows a simple four-step 
procedure. This process will be what we use for the remained 
of the textbook and course, and though the hypothesis and 
statistics we use will change, this process will not. 

Step 1: State the Hypotheses 

Your hypotheses are the first thing you need to lay out. 
Otherwise, there is nothing to test! You have to state the null 
hypothesis (which is what we test) and the alternative 
hypothesis (which is what we expect). These should be stated 
mathematically as they were presented above AND in words, 
explaining in normal English what each one means in terms of 
the research question. 

Step 2: Find the Critical Values 

Next, we formally lay out the criteria we will use to test our 
hypotheses. There are two pieces of information that inform 
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our critical values: α, which determines how much of the area 
under the curve composes our rejection region, and the 
directionality of the test, which determines where the region 
will be. 

Step 3: Compute the Test Statistic 

Once we have our hypotheses and the standards we use to test 
them, we can collect data and calculate our test statistic, in 
this case z. This step is where the vast majority of differences 
in future chapters will arise: different tests used for different 
data are calculated in different ways, but the way we use and 
interpret them remains the same. 

Step 4: Make the Decision 

Finally, once we have our obtained test statistic, we can 
compare it to our critical value and decide whether we should 
reject or fail to reject the null hypothesis. When we do this, we 
must interpret the decision in relation to our research question, 
stating what we concluded, what we based our conclusion on, 
and the specific statistics we obtained. 

Example: Movie Popcorn 

Let’s see how hypothesis testing works in action 
by working through an example. Say that a movie 
theater owner likes to keep a very close eye on how 
much popcorn goes into each bag sold, so he 
knows that the average bag has 8 cups of popcorn 
and that this varies a little bit, about half a cup. 
That is, the known population mean is μ = 8.00 and 
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the known population standard deviation is σ =0.50. 
The owner wants to make sure that the newest 
employee is filling bags correctly, so over the course 
of a week he randomly assesses 25 bags filled by 
the employee to test for a difference (n = 25). He 
doesn’t want bags overfilled or under filled, so he 
looks for differences in both directions. This 
scenario has all of the information we need to begin 
our hypothesis testing procedure. 

Step 1: State the Hypotheses 

Our manager is looking for a difference in the mean 
weight of popcorn bags compared to the 
population mean of 8. We will need both a null and 
an alternative hypothesis written both 
mathematically and in words. We’ll always start with 
the null hypothesis: 

H0: There is no difference in the weight of popcorn 
bags from this employee H0: μ = 8.00 

Notice that we phrase the hypothesis in terms of 
the population parameter μ, which in this case would 
be the true average weight of bags filled by the new 
employee. 

Our assumption of no difference, the null hypothesis, is that 
this mean is exactly 

the same as the known population mean value we 
want it to match, 8.00. Now let’s do the alternative: 

HA: There is a difference in the weight of popcorn 
bags from this employee HA: μ ≠ 8.00 

In this case, we don’t know if the bags will be too 
full or not full enough, so we do a two-tailed 
alternative hypothesis that there is a difference. 
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Step 2: Find the Critical Values 

Our critical values are based on two things: the directionality 
of the test and the level of significance. We decided in step 1 
that a two-tailed test is the appropriate directionality. We were 
given no information about the level of significance, so we 
assume that α = 0.05 is what we will use. As stated earlier in the 
chapter, the critical values for a two-tailed z-test at α = 0.05 are 
z* = ±1.96. This will be the criteria we use to test our hypothesis. 
We can now draw out our distribution so we can visualize the 
rejection region and make sure it makes sense 

Figure 7: Rejection region for z* = ±1.96 

Step 3: Calculate the Test Statistic 

Now we come to our formal calculations. Let’s say that the 
manager collects data and finds that the average weight of 
this employee’s popcorn bags is ̅X = 7.75 cups. We can now 
plug this value, along with the values presented in the original 
problem, into our equation for z: 
z = 7.75 − 8.00 = -.25   = -2.50 
       0.50/√25         0.10 
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So our test statistic is z = -2.50, which we can draw onto our 
rejection region distribution: 

Figure 8: Test statistic location 

Step 4: Make the Decision 

Looking at Figure 5, we can see that our obtained z-statistic 
falls in the rejection region. We can also directly compare it to 
our critical value: in terms of absolute value, -2.50 > -1.96, so we 
reject the null hypothesis. We can now write our conclusion: 

Reject H0. Based on the sample of 25 bags, we can 
conclude that the average popcorn bag from this 
employee is smaller (̅X = 7.75 cups) than the average 
weight of popcorn bags at this movie theater, z = – 2.50, 
p < 0.05. 

When we write our conclusion, we write out the words to 
communicate what it actually means, but we also include the 
average sample size we calculated (the exact location doesn’t 
matter, just somewhere that flows naturally and makes sense) 
and the z-statistic and p-value. We don’t know the exact p-
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value, but we do know that because we rejected the null, it 
must be less than α. 

Effect Size 

When we reject the null hypothesis, we are stating that the 
difference we found was statistically significant, but we have 
mentioned several times that this tells us nothing about 
practical significance. To get an idea of the actual size of what 
we found, we can compute a new statistic called an effect 
size. Effect sizes give us an idea of how large, important, or 
meaningful a statistically significant effect is. 

For mean differences like we 
calculated here, our effect size is Cohen’s 
d: 

This is very similar to our formula for z, but we no 
longer take into account the sample size (since 
overly large samples can make it too easy to reject 
the null). Cohen’s d is interpreted in units of 
standard deviations, just like z. 

For our example: 
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⯑ = 7.75-8.00 = -0.25 = .50 
          0.50           0.50 

Cohen’s d is interpreted as small, moderate, or large. 
Specifically, d = 0.20 is small, d = 0.50 is moderate, and d = 0.80 
is large. Obviously values can fall in between these guidelines, 
so we should use our best judgment and the context of the 
problem to make our final interpretation of size. Our effect size 
happened to be exactly equal to one of these, so we say that 
there was a moderate effect. 

Effect sizes are incredibly useful and provide important 
information and clarification that overcomes some of the 
weakness of hypothesis testing. Whenever you find a 
significant result, you should always calculate an effect size 

d Interpretation 

0.0 – 0.2 negligible 

0.2 – 0.5 small 

0.5 – 0.8 medium 

0.8 – large 

Table 1. Interpretation of Cohen’s d 
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Example: Office Temperature 

Let’s do another example to solidify our 
understanding. Let’s say that the office 
building you work in is supposed to be kept 
at 74 degree Fahrenheit but is allowed 

to vary by 1 degree in either direction. You 
suspect that, as a cost saving measure, the 
temperature was secretly set higher. You set 
up a formal way to test your hypothesis. 

Step 1: State the Hypotheses 

You start by laying out the null hypothesis: 

H0: There is no difference in the average building 
temperature H0: μ = 74 

Next you state the alternative hypothesis. 
You have reason to suspect a specific 
direction of change, so you make a one-
tailed test: 

HA: The average building temperature is 
higher than claimed HA: μ > 74 
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Step 2: Find the Critical Values 

You know that the most common level of 
significance is α = 0.05, so you keep that the same and 
know that the critical value for a one-tailed z-test is 
zcrit* = 1.645. To keep track of the directionality of the 
test and rejection region, you draw out your 
distribution: 

Step 3: Calculate the Test Statistic 

Now that you have everything set up, you 
spend one week collecting temperature 
data: 
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Day Temp 

Monday 77 

Tuesday 76 

Wednesday 74 

Thursday 78 

Friday 78 

You calculate the average of these scores 
to be ⯑̅ = 76.6 degrees. You use this to 
calculate the test statistic, using μ = 74 (the 
supposed average temperature), σ = 1.00 
(how much the temperature should vary), 
and n = 5 (how many data points you 
collected): 

z = 76.60 − 74.00 = 2.60   = 5.78 

          1.00/√5            0.45 

This value falls so far into the tail that it cannot even 
be plotted on the distribution! 
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Figure 7: Obtained z-statistic 

Step 4: Make the Decision 

You compare your obtained z-statistic, z = 5.77, to the 
critical value, z* = 1.645, and find that z > z*. Therefore 
you reject the null hypothesis, concluding: Based on 5 
observations, the average temperature (⯑̅ = 76.6 
degrees) is statistically significantly higher than it is 
supposed to be, z = 5.77, p < .05. 

A significant result gives you more confidence to 
also calculate an effect size: 

d = (76.60-74.00)/ 1= 2.60 

The effect size you calculate is definitely large, 
meaning someone has some explaining to do! 

 

Example: Different Significance Level 

First, let’s take a look at an example phrased in generic terms, 
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rather than in the context of a specific research question, to see 
the individual pieces one more time. This time, however, we will 
use a stricter significance level, α = 0.01, to test the hypothesis. 

Step 1: State the Hypotheses 

We will use 60 as an arbitrary null hypothesis value: H0: The 
average score does not differ from the population H0: μ = 50 

We will assume a two-tailed test: HA: The average score does 
differ HA: μ ≠ 50 

Step 2: Find the Critical Values 

We have seen the critical values for z-tests at α = 0.05 levels of 
significance several times. To find the values for α = 0.01, we will 
go to the standard normal table and find the z-score cutting 
of 0.005 (0.01 divided by 2 for a two-tailed test) of the area in 
the tail, which is zcrit* = ±2.575. Notice that this cutoff is much 
higher than it was for α = 0.05. This is because we need much 
less of the area in the tail, so we need to go very far out to find 
the cutoff. As a result, this will require a much larger effect or 
much larger sample size in order to reject the null hypothesis. 

Step 3: Calculate the Test Statistic 

We can now calculate our test statistic.  The average of 10 
scores is M = 60.40 with a µ = 60. We will use σ = 10 as our 
known population standard deviation. From this information, 
we calculate our z-statistic as: 
z = 60.40-60.00 =       0.40   = 0.13 
          10.00/√10            3.16 
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Step 4: Make the Decision 

Our obtained z-statistic, z = 0.13, is very small. It is much less 
than our critical value of 2.575. Thus, this time, we fail to reject 
the null hypothesis. Our conclusion would look something like: 

Based on the sample of 10 scores, we cannot conclude 
that there is no effect causing the mean (M = 60.40) to 
be statistically significantly different from 60.00, z = 0.13, 
p > 0.01. 

Notice two things about the end of the conclusion. First, we 
wrote that p is greater than instead of p is less than, like we 
did in the previous two examples. This is because we failed 
to reject the null hypothesis. We don’t know exactly what the 
p- value is, but we know it must be larger than the α level 
we used to test our hypothesis. Second, we used 0.01 instead 
of the usual 0.05, because this time we tested at a different 
level. The number you compare to the p-value should always 
be the significance level you test at. Because we did not detect 
a statistically significant effect, we do not need to calculate 
an effect size. Note: some statisticians will suggest to always 
calculate effects size as a possibility of Type II error. Although 
insignificant, calculating d = (60.4-60)/10 = .04 which suggests 
no effect (and not a possibility of Type II error). 

Review Considerations in Hypothesis 
Testing 

Errors in Hypothesis Testing 

Keep in mind that rejecting the null hypothesis is not an all-or-
nothing decision. The Type I error rate is affected by the α level: 
the lower the α level the lower the Type I error rate. It might 
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seem that α is the probability of a Type I error. However, this is 
not correct. Instead, α is the probability of a Type I error given 
that the null hypothesis is true. If the null hypothesis is false, 
then it is impossible to make a Type I error. The second type of 
error that can be made in significance testing is failing to reject 
a false null hypothesis. This kind of error is called a Type II error. 
Unlike a Type I error, a Type II error is not really an error. When 
a statistical test is not significant, it means that the data do 
not provide strong evidence that the null hypothesis is false. 
Lack of significance does not support the conclusion that the 
null hypothesis is true. Therefore, a researcher should not 
make the mistake of incorrectly concluding that the null 
hypothesis is true when a statistical test was not significant. 
Instead, the researcher should consider the test inconclusive. 
Contrast this with a Type I error in which the researcher 
erroneously concludes that the null hypothesis is false when, 
in fact, it is true. A Type II error can only occur if the null 
hypothesis is false. If the null hypothesis is false, then the 
probability of a Type II error is called β (beta). The probability of 
correctly rejecting a false null hypothesis equals 1- β and is 
called power. 
Statistical power is simply our ability to correctly detect an 
effect that exists. It is influenced by the size of the effect 
(larger effects are easier to detect), the significance level we 
set (making it easier to reject the null makes it easier to detect 
an effect, but increases the likelihood of a Type I Error), and the 
sample size used (larger samples make it easier to reject the 
null). 

Statistical Power 

The statistical power of a research design is the probability 
of rejecting the null hypothesis given the sample size and 
expected relationship strength. Statistical power is the 
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complement of the probability of committing a Type II error. 
Clearly, researchers should be interested in the power of their 
research designs if they want to avoid making Type II errors. 
In particular, they should make sure their research design has 
adequate power before collecting data. A common guideline 
is that a power of .80 is adequate. This means that there is an 
80% chance of rejecting the null hypothesis for the expected 
relationship strength. 

Given that statistical power depends primarily on 
relationship strength and sample size, there are essentially two 
steps you can take to increase statistical power: increase the 
strength of the relationship or increase the sample size. 
Increasing the strength of the relationship can sometimes be 
accomplished by using a stronger manipulation or by more 
carefully controlling extraneous variables to reduce the 
amount of noise in the data (e.g., by using a within-subjects 
design rather than a between-subjects design). The usual 
strategy, however, is to increase the sample size. For any 
expected relationship strength, there will always be some 
sample large enough to achieve adequate power. 

Inferential statistics uses data from a sample of individuals to 
reach conclusions about the whole population. The degree to 
which our inferences are valid depends upon how we selected 
the sample (sampling technique) and the characteristics 
(parameters) of population data. Statistical analyses assume 
that sample(s) and population(s) meet certain conditions 
called statistical assumptions. 

It is easy to check assumptions when using statistical 
software and it is important as a researcher to check for 
violations; if violations of statistical assumptions are not 
appropriately addressed then results may be interpreted 
incorrectly. 
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Learning Objectives 

Having read the chapter, students should be able to: 

• Conduct a hypothesis test using a z-score statistics, 
locating critical region, and make a statistical decision 
including. 

• Explain the purpose of measuring effect size and power, 
and be able to compute Cohen’s d. 

Exercises – Ch. 10 

1. List the main steps for hypothesis testing with the z-
statistic. When and why do you calculate an effect size? 

2. Determine whether you would reject or fail to reject the 
null hypothesis in the following situations: 

1. z = 1.99, two-tailed test at α = 0.05 
2. z = 1.99, two-tailed test at α = 0.01 
3. z = 1.99, one-tailed test at α = 0.05 
4. z = 1.99, one-tailed test at α = 0.05 

3. You are part of a trivia team and have tracked your team’s 
performance since you started playing, so you know that 
your scores are normally distributed with μ = 78 and σ = 12. 
Recently, a new person joined the team, and you think the 
scores have gotten better. Use hypothesis testing to see if 
the average score has improved based on the following 8 
weeks’ worth of score data: 82, 74, 62, 68, 79, 94, 90, 81, 80. 

4. A study examines self-esteem and depression in 
teenagers.  A sample of 25 teens with a low self-esteem are 
given the Beck Depression Inventory.  The average score 
for the group is 20.9.  For the general population, the 
average score is 18.3 with σ = 12.  Use a two-tail test with α = 
0.05 to examine whether teenagers with low self-esteem 
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show significant differences in depression. 
5. You get hired as a server at a local restaurant, and the 

manager tells you that servers’ tips are $42 on average but 
vary about $12 (μ = 42, σ = 12). You decide to track your tips 
to see if you make a different amount, but because this is 
your first job as a server, you don’t know if you will make 
more or less in tips. After working 16 shifts, you find that 
your average nightly amount is $44.50 from tips. Test for a 
difference between this value and the population mean at 
the α = 0.05 level of significance. 

Answers to Odd- Numbered Exercises – Ch. 
10 

1. List hypotheses. Determine critical region. Calculate z. 
Compare z to critical region. Draw Conclusion.  We calculate an 
effect size when we find a statistically significant result to see if 
our result is practically meaningful or important 
3. Step 1: H0: μ = 78 “The average score is not different after the 
new person joined”, HA: μ > 78 “The average score has gone up 
since the new person joined.” 
Step 2: One-tailed test to the right, assuming α = 0.05, z* = 
1.645. 
Step 3: ̅X = 78.889, ⯑X̅ = 12/sqrt(9) = 4, z = .889/4 = .22 
Step 4: z < z*, Fail to Reject H0. Based on 8 weeks of games, we 
can conclude that our average score (̅X = 78.889) is not 
different than the new person is on the team, z = 0.22, p > .05. 
Since the result is not significant, we can still run an effect size: 
Cohen’s d = .889/12 = .07, which is no effect. 

5. Step 1: H0: μ = 42 “My average tips does not differ from other 
servers”, HA: μ ≠ 42 “My average tips do differ from others” 
Step 2: Two-tailed test to the right, assuming α = 0.05, z* = 
±1.96. 
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Step 3: ̅X = 44.50, ⯑X̅ = 12/√16 = 3, z = .833. 
Step 4: z > z*, Fail to reject H0. Based on 16 shifts, we can 
conclude that average tip (̅X = 44.50) is not different from 
rest of servers, z = 0.833, p > .05. Since the result is no 
significant, we don’t necessarily need an effect size – but we 
will check: Cohen’s d = 2.5/12=.2, which is actually a small effect. 
This may indicate that we have a Type II error (or we need 
more shifts examine for potential differences). 
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11.  Chapter 11: 
Introduction to t-tests 

In this unit, we made a big leap from basic descriptive statistics 
into full hypothesis testing and inferential statistics. For the rest 
of the unit, we will be learning new tests, each of which is just 
a small adjustment on the test before it. In this chapter, we will 
learn about the first of three t-tests, and we will learn a new 
method of testing the null hypothesis: confidence intervals. 

At this point, we may think we know all about hypothesis 
testing. Here’s a surprise – what we know will not help you 
much as a researcher. Why? The procedures for testing 
hypotheses described up to this point were, of course, 
absolutely necessary for what comes next, but these 
procedures involved comparing a group of scores to a known 
population. In real research practice, we often compare two 
or more groups of scores to each other, without any direct 
information about populations. For example: 

• Comparing the intelligence scores (IQ) of one sample to 
standardized IQ norms and population values. 

• Comparing pre and post-test anxiety scores for a group of 
patients before and after psychotherapy or number of 
familiar versus unfamiliar words recalled in a memory 
experiment. 

• Comparing scores on a cognitive test for a group of 
participants experiencing sleep deprivation and a group of 
participants who slept normally. 

• Comparing scores on self-esteem test scores for a group of 
10-year-old girls to a group of 10-year-old boys. 

These kinds of research situations are among the most 

Chapter 11: Introduction to
t-tests  |  307



common in psychology, where the only information available is 
usually from samples. Nothing is known about the populations 
that the samples are supposed to come from. In particular, 
the researcher does not know the variance of the populations 
involved. In this chapter, we will learn the solution to the 
problem of the unknown population variance. 

The hypothesis-testing procedures we learn in this chapter 
(and a few others) are examples of t-tests. Its main principles 
were originally developed by William S. Gosset who published 
his research articles anonymously using the name “Student”. 

William S. Gosset graduated from Oxford 
University in 1899 with degrees in mathematics and 
chemistry. It happened that in the same year the 
Guinness brewers in Dublin, Ireland, were seeking a 
few young scientists to take a first-ever scientific 
look at beer making. Gosset took one of these jobs 
and soon had immersed himself in barley, hops, and 
vats of brew. 
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Photo in the public domain. 

The problem was how to make a beer of 
consistently high quality. Scientists want to make a 
quality beer less variable, and were especially 
interested in finding the cause of bad batches. But a 
business such as a brewery could not afford to waste 
money on experiments involving large numbers of 
vats. So, Gosset was forced to contemplate the 
probability of a certain strain of barley producing 
terrible beer when the experiment could consist of 
only a few batches of each strain. So, from this 
Gosset discovered the t distribution and invented 
the t-test. 

Most of his work was done on the back of 
envelopes, with plenty of minor errors in arithmetic 
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that had to be worked out later. He published his 
paper on his “brewery methods” only when editors 
of scientific journals demanded. At that time, the 
Guinness brewery did not allow a scientist to publish 
papers, because more than one Guinness scientist 
has revealed brewery secrets. To this day, most 
scientists call the t- distribution “Student’s t” 
because Gosset wrote under the anonymous name 
“Student” so that the brewery would not know 
about his writing or be identified through his being 
known to be its employee. Supposedly, the brewery 
learned of his scientific fame only at his death, when 
colleagues wanted to honor him. 

The t-statistic for one-sample (compared to 
population mean) 

Last chapter, we were introduced to hypothesis testing using 
the z-statistic for sample means that we learned in Unit 1. This 
was a useful way to link the material and ease us into the new 
way to looking at data, but it isn’t a very common test because 
it relies on knowing the population standard deviation, σ, which 
is rarely going to be the case. Instead, we will estimate that 
parameter σ using the sample statistics in the same way that 
we estimate μ using ̅X (μ will still appear in our formulas 
because we suspect something about its value and that is what 
we are testing). Our new statistic is called t, and for testing 
one population mean using a single sample (called a 1-sample 
t-test) it takes the form: 
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1-sample t-test: 

t is mean differences over the estimated standard 
error 

  in other words 

Notice that t looks almost identical to z; this is 
because they test the exact same thing: the value of 
a sample mean compared to what we expect of the 
population. The only difference is that the standard 
error is now denoted ⯑X̅ or sM to indicate that we 
use the sample statistic for standard deviation, s, 
instead of the population parameter σ.  We call the 
standard error using s, the estimated standard error 
of the mean. The process of using and interpreting 
the standard error and the full test statistic remain 
exactly the same. 
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Estimated standard error of the mean ⯑X̅  or sM 

 or equivalent 

Note: Formulas can notate as ⯑X̅  or sM. You can 
calculate estimated standard error using the sample 
standard deviation (s) or sample variance (s2). 

Setting up for step 2 

In order to find the critical boundary for a t-test we must use 
degrees of freedom. In chapter 4 we learned that the formulae 
for sample standard deviation and population standard 
deviation differ by one key factor: the denominator for the 
parameter is N but the denominator for the statistic is n – 1, 
also known as degrees of freedom, df. As we learned earlier, 
degrees of freedom gets its name because it is the number 
of scores in a sample that are “free to very”. The idea is that 
when finding the variance we must first know the mean. If we 
know the mean and all but one of the scores in a sample, we 
can figure out the one we do not know with a little math. In 
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this situation the degrees of freedom is the number of scores 
minus 1. 
Because we are using a new measure of spread, we can no 
longer use the standard normal distribution and the z-table to 
find our critical values. For t-tests, we will use the t-distribution 
and t-table to find these values. 
The t-distribution, like the standard normal distribution, is 
symmetric and normally distributed with a mean of 0 and 
standard error (as the measure of standard deviation for 
sampling distributions) of 1. However, because the calculation 
of standard error uses degrees of freedom, there will be a 
different t-distribution for every degree of freedom. Luckily, 
they all work exactly the same, so in practice this difference is 
minor. 

Figure 1 shows four curves: a normal distribution curve labeled
z, and three t– distribution curves for 2, 10, and 30 degrees 
of freedom. Remember degrees of freedom refers to 
the maximum number of logically independent values, which 
are values that have the freedom to vary, in the data sample. 
Two things should stand out: First, for lower degrees of 
freedom (e.g., 2), the tails of the distribution are much fatter, 
meaning a larger proportion of the area under the curve falls in 
the tail. This means that we will have to go farther out into the 
tail to cut off the portion corresponding to 5% or α = 0.05, which 
will, in turn, lead to higher critical (rejection) values. Second, as 
the degrees of freedom increase, we get closer and closer to 
the z curve. Even the distribution with df = 30, corresponding 
to a sample size of just 31 people, is nearly indistinguishable 
from z. In fact, a t-distribution with infinite degrees of freedom 
(theoretically, of course) is exactly the standard normal 
distribution. Because of this, the bottom row of the t-table also 
includes the critical values for z-tests at the specific 
significance levels. Even though these curves are very close, 
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it is still important to use the correct table and critical values, 
because small differences can add up quickly. 

Figure 1. Distributions comparing effects of degrees of 
freedom 

The t-distribution table lists critical values for one- and two-
tailed tests at several levels of significance arranged into 
columns. The rows of the t-table list degrees of freedom up to 
df = 100 in order to use the appropriate distribution curve. It 
does not, however, list all possible degrees of freedom in this 
range, because that would take too many rows. Above df = 40, 
the rows jump in increments of 10. If a problem requires you 
to find critical values and the exact degrees of freedom is not 
listed, you always round down to the next smallest number. For 
example, if you have 48 people in your sample, the degrees of 
freedom are n – 1 = 48 – 1 = 47; however, 47 doesn’t appear on 
our table, so we round down and use the critical values for df 
= 40, even though 50 is closer. We do this because it avoids 
inflating Type I Error (false positives, see chapter 9) by using 
criteria that are too lax. 

Hypothesis Testing with t 

Hypothesis testing with the t-statistic works exactly the same 
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way as z-tests did, following the four-step process of 1) Stating 
the Hypothesis, 2) Finding the Critical Values, 3) Computing 
the Test Statistic, and 4) Making the Decision. Just like the z-
statistic, our ultimate goal is to decide whether to reject or fail 
to reject the null hypothesis. 

We will work through an example: let’s say that you move to 
a new city and find an auto shop to change your oil. Your old 
mechanic did the job in about 30 minutes (though you never 
paid close enough attention to know how much that varied), 
and you suspect that your new shop takes much longer. After 
4 oil changes, you think you have enough evidence to 
demonstrate this. 

Step 1: State the Hypotheses 

Our hypotheses for 1-sample t-tests are identical to those we 
used for z-tests. We still state the null and alternative 
hypotheses mathematically in terms of the population 
parameter and written out in readable English. In the example, 
the individual hypothesized that the shop took longer 
(increased time) which is phrased as a directional research 
hypothesis, corresponding to a 1-tail test. 
For our example: 
H0: There is no difference in the average time to change a car’s 
oil – mathematically can be phrased as, H0: μ = 30 
HA: This shop takes longer to change oil than your old 
mechanic – mathematically can be phrased as, HA: μ > 30 
It is important to set up the hypotheses giving context of the 
problem/study (using words) and mathematically connecting 
to the population mean (μ) that is reported in the problem/
study (or in real life you would look up or calculate from a 
given data set). 
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Step 2: Find the Critical Values 

As noted above, our critical values still delineate the area in 
the tails under the curve corresponding to our chosen level 
of significance. Because we have no reason to change 
significance levels, we will use α = 0.05, and because we suspect 
a direction of effect, we have a one-tailed test. To find our 
critical values for t, we need to add one more piece of 
information: the degrees of freedom. 
For this example: df = n – 1 = 4 – 1 = 3 

Going to our t-table, we find the column corresponding to our 
one-tailed significance level and find where it intersects with 
the row for 3 degrees of freedom. As shown in Figure 2: our 
critical value is t* = 2.353 

Figure 2. t-table 

We can then shade this region on our t-distribution to visualize 
our critical rejection region 

316  |  Chapter 11: Introduction to t-tests



Figure 3. Critical Rejection Region calculated from df and 
identified using the t-distribution Table. 

Step 3: Compute the Test Statistic 

The four wait times you experienced for your oil changes are 
the new shop were 46 minutes, 58 minutes, 40 minutes, and 71 
minutes. We will use these to calculate ̅X and s by first filling 
in the sum of squares table in Table 1: 

        X X – ̅X (X – ̅X)2 

46 -7.75 60.06 

58 4.25 18.06 

40 -13.75 189.06 

71 17.25 297.56 

Σ = 215 Σ = 0 Σ = 564.74 

Table 1. Sum of Squares Table 
After filling in the first row to get ΣX = 215, we find 

that the mean is ̅X = 53.75 (215 divided by sample 
size 4), which allows us to fill in the rest of the table 
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to get our sum of squares SS = 564.74, which we then 
plug in to the formula for standard deviation from 
chapter 3: 

Plugging in SS = 564.74 and df = 3, we get s = 13.72. Next, we 
take this value and plug it in to the formula for standard error: 

Plugging in s = 13.72 and √n = √4 = 2, we get S ̅X=6.86. 
And, finally, we put the standard error, sample mean, and null 
hypothesis value into the formula for our test statistic t: 

Plugging in ̅X=53.75, μ = 30, and S ̅X=6.86, we get 23.75/
6.68 = 3.46. This may seem like a lot of steps, but it is really 
just taking our raw data to calculate one value at a time and 
carrying that value forward into the next equation: data → 
sample size/degrees of freedom → mean → sum of squares → 
standard deviation → standard error → test statistic. At each step, 
we simply match the symbols of what we just calculated to 
where they appear in the next formula to make sure we are 
plugging in everything correctly. Also, for this class, you may 
directly given the standard deviation and mean to work from, 
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so be sure to identify where you are starting from if not given 
the data to work through the entire problem. 

Step 4: Make the Decision 

Now that we have our critical value and test statistic, we can 
make our decision using the same criteria we used for a z-test. 
Our obtained t-statistic was t = 3.46 and our critical value was t* 
= 2.353: t > t*, so we reject the null hypothesis and conclude: 
Based on our four oil changes, the new mechanic takes longer 
on average (̅X = 53.75) to change oil than our old mechanic, 
t(3) = 3.46, p < .05. 
Notice that we also include the degrees of freedom in 
parentheses next to t. We need to calculate an effect size, 
which is still Cohen’s d, but now we use s in place of σ: 

Cohen’s d                                                                             
                                                   

   
                                                                                                   
                                        Example: d = (53.75-30)/13.72 = 
1.73 

For this example, d = (53.75-30)/13.72 = 1.73. This is a large effect. 
It should also be noted that for some things, like the minutes 
in our current example, we can also interpret the magnitude of 
the difference we observed (23 minutes and 45 seconds) as an 
indicator of importance since time is a familiar metric. 
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Confidence Intervals 

Up to this point, we have learned how to estimate the 
population parameter for the mean using sample data and 
a sample statistic. From one point of view, this makes sense: 
we have one value for our parameter so we use a single value 
(called a point estimate) to estimate it. However, we have seen 
that all statistics have sampling error and that the value we 
find for the sample mean will bounce around based on the 
people in our sample, simply due to random chance. Thinking 
about estimation from this perspective, it would make more 
sense to take that error into account rather than relying just on 
our point estimate. To do this, we calculate what is known as a 
confidence interval. 
A confidence interval starts with our point estimate then 
creates a range of scores considered plausible based on our 
standard deviation, our sample size, and the level of 
confidence with which we would like to estimate the 
parameter. This range, which extends equally in both 
directions away from the point estimate, is called the margin 
of error. We calculate the margin of error by multiplying our 
two-tailed critical value by our standard error: 

Margin of Error (MOE)                                                     
                                                                                                   

                     Margin of Error = where 
s = standard deviation and t is the critical value 
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t.  The MOE is the t-critical value times the 
estimated standard error, S ̅X. 

One important consideration when calculating the margin of 
error is that it can only be calculated using the critical value 
for a two-tailed test. This is because the margin of error moves 
away from the point estimate in both directions, so a one- 
tailed value does not make sense. 

The critical value we use will be based on a chosen level 
of confidence, which is equal to 1 – α. Thus, a 95% level of 
confidence corresponds to α = 0.05. Thus, at the 0.05 level of 
significance, we create a 95% Confidence Interval. How to 
interpret that is discussed further on. 
Once we have our margin of error calculated, we add it to our 
point estimate for the mean to get an upper bound to the 
confidence interval and subtract it from the point estimate for 
the mean to get a lower bound for the confidence interval: 

Confidence Intervals  (CI)                                               
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CI =          where 

 is the Margin of Error (MOE) 

You will calculate an upper bound value and a 
lower bound value. 

Upper bound (UB)= use the + in the CI 
formula =  ̅X+MOE                           

Lower bound (LB) = use the + in the CI 
formula  = ̅X – MOE                                               
                                                  

To write out a confidence interval, we always use 
soft brackets and put the lower bound, a comma, 
and the upper bound: 

Confidence Interview = (LB value, UB 
value) 

Let’s see what this looks like with some actual numbers by 
taking our oil change data and using it to create a 95% 
confidence interval estimating the average length of time it 
takes at the new mechanic. We already found that our average 
was ̅X =53.75 and our standard error was s⯑̅ = 6.86. 
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We also found a critical value to test our hypothesis, but 
remember that we were testing a one-tailed hypothesis, so 
that critical value won’t work. To see why that is, look at the 
column headers on the t– table. The column for one-tailed α 
= 0.05 is the same as a two-tailed α = 0.10. If we used the 
old critical value, we’d actually be creating a 90% confidence 
interval (1.00-0.10 = 0.90, or 90%). To find the correct value, we 
use the column for two- tailed α = 0.05 and, again, the row for 3 
degrees of freedom, to find t* = 3.182. 

Now we have all the pieces we need to construct our 
confidence interval: 

95% CI = 53.75 ± 3.182(6.86) 
upper bound = 53.75 + 3.182(6.86) 

UB = 53.75 + 21.83 = 75.58 
lower bound = 53.75 − 3.182(6.86) 

LB = 53.75 − 21.83 = 31.92 
95% CI = (31.92, 75.58) 

So we find that our 95% confidence interval runs from 31.92 
minutes to 75.58 minutes, but what does that actually mean? 
The range (31.92, 75.58) represents values of the mean that we 
consider reasonable or plausible based on our observed data. 
It includes our point estimate of the mean, ̅X = 53.75, in the 
center, but it also has a range of values that could also have 
been the case based on what we know about how much these 
scores vary (i.e. our standard error). 
It is very tempting to also interpret this interval by saying that 
we are 95% confident that the true population mean falls 
within the range (31.92, 75.58), but this is not true. The reason it 
is not true is that phrasing our interpretation this way 
suggests that we have firmly established an interval and the 
population mean does or does not fall into it, suggesting that 
our interval is firm and the population mean will move around. 
However, the population mean is an absolute that does not 
change; it is our interval that will vary from data collection to 
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data collection, even taking into account our standard error. 
The correct interpretation, then, is that we are 95% confident 
that the range (31.92, 75.58) brackets the true population 
mean. This is a very subtle difference, but it is an important 
one. 

Interpreting Confidence Intervals 

Confidence intervals are notoriously confusing, 
primarily because they don’t mean what we might 
intuitively think they mean. If I tell you that I have 
computed a “95% confidence interval” for my 
statistic, then it would seem natural to think that we 
can have 95% confidence that the true parameter 
value falls within this interval. However, as we will 
see throughout the course, concepts in statistics 
often don’t mean what we think they should mean. 
In the case of confidence intervals, we can’t 
interpret them in this way because the population 
parameter has a fixed value – it either is or isn’t in 
the interval, so it doesn’t make sense to talk about 
the probability of that occurring. Jerzy Neyman, the 
inventor of the confidence interval, said: 

“The parameter is an unknown constant 
and no probability statement concerning its 
value may be made.”(Neyman 1937) 

Instead, we have to view the confidence interval 
procedure from the same standpoint that we 
viewed hypothesis testing: As a procedure that in 
the long run will allow us to make correct 
statements with a particular probability. Thus, the 

324  |  Chapter 11: Introduction to t-tests

https://open.maricopa.edu/psy230mm/format/ch019.xhtml#ref-Neyman37


proper interpretation of the 95% confidence interval 
is that it is an interval that will contain the true 
population mean 95% of the time. 

Hypothesis Testing with Confidence Intervals 

As a function of how they are constructed, we can also use 
confidence intervals to test hypotheses. However, we are 
limited to testing two-tailed hypotheses only for this, because 
of how the intervals work, as discussed above. 
Once a confidence interval has been constructed, using it to 
test a hypothesis is simple. 

• The range of the confidence interval brackets (or contains, 
or is around) the null hypothesis value, we fail to reject the 
null hypothesis. 

• If it does not bracket the null hypothesis value (i.e. if the 
entire range is above the null hypothesis value or below it), 
we reject the null hypothesis. 

The reason for this is clear if we think about what a confidence 
interval represents. Remember: a confidence interval is a range 
of values that we consider reasonable or plausible based on our 
data. Thus, if the null hypothesis value is in that range, then 
it is a value that is plausible based on our observations. If the 
null hypothesis is plausible, then we have no reason to reject 
it. Thus, if our confidence interval brackets the null hypothesis 
value, thereby making it a reasonable or plausible value based 
on our observed data, then we have no evidence against the 
null hypothesis and fail to reject it. However, if we build a 
confidence interval of reasonable values based on our 
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observations and it does not contain the null hypothesis value, 
then we have no empirical (observed) reason to believe the null 
hypothesis value and therefore reject the null hypothesis. 

Let’s see an example of hypothesis testing using Confidence 
Intervals 

You hear that the national average on a measure of 
friendliness is 38 points. You want to know if people in 
your community are more or less friendly than people 
nationwide, so you collect data from 30 random people 
in town to look for a difference. We’ll follow the same 
four-step hypothesis testing procedure as before. 

Step 1: State the Hypotheses 

We will start by laying out our null and alternative 
hypotheses: 

H0: There is no difference in how friendly the 
local community is compared to the national 
average; H0: μ = 38 

HA: There is a difference in how friendly the 
local community is compared to the national 
average; HA: μ ≠ 38 

Remember we must use a 2-tail test for this, so your 
hypotheses would be non-directional. 

Step 2: Find the Critical Values 

We need our critical values in order to 
determine the width of our margin of error. 
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We will assume a significance level of α = 0.05 
(which will give us a 95% CI). 

From the t-table, a two-tailed 
critical value at α = 0.05 with 29 
degrees of freedom (n – 1 = 30 – 1 = 29) 
is t* = 2.045. 

Step 3: Calculations 

Now we can construct our confidence interval. After 
we collect our data, we find that the average person in 
our community scored 39.85, or ̅X= 39.85, and our 
standard deviation was s = 5.61. First, we need to use 
this standard deviation, plus our sample size of n = 30, 
to calculate our standard error: 

s ̅X = s/√n = 5.61/√30 = 1.02 

Now we can put that value (1.02 as S ̅X), 
our point estimate for the sample mean 
(39.85), and our critical t-value from step 2 
(2.045) into the formula for a confidence 
interval: 

95% CI= 39.85 ± 2.045(1.02) 

UB= 39.85 + 2.045(1.02) = 39.85 + 2.09 = 41.94 

LB = 39.85 − 2.045(1.02)= 39.85 − 2.09 = 37.76 

95%  CI = (37.76, 41.94) 

Step 4: Make the Decision 

Finally, we can compare our confidence 
interval to our null hypothesis value. The 
null value of 38 is higher than our lower 
bound of 37.76 and lower than our upper 
bound of 41.94. Thus, the confidence 
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interval brackets our null hypothesis value, 
and we fail to reject the null hypothesis: 

Fail to Reject H0. Based 
on our sample of 30 people, 
our community not 
different in average 
friendliness ( ̅X = 39.85) 
than the nation as a whole, 
95% CI = (37.76, 41.94). 

Note that we don’t report a test 
statistic or p-value because that is not 
how we tested the hypothesis, but we 
do report the value we found for our 
confidence interval. 

An important characteristic of 
hypothesis testing is that both methods 
will always give you the same result. That 
is because both are based on the standard 
error and critical values in their calculations. 
To check this, we can calculate a t-statistic 
for the example above and find it to be t = 
1.81, which is smaller than our critical value 
of 2.045 and fails to reject the null 
hypothesis. 

Although we failed to reject the null, we 
can calculate Cohen’s d = ( ̅X – µ)/s = 
(39.85-38)/5.61 = .33. d = .33 is a small effect 
size suggesting that we may have a Type II 
error. 

Note: we can also calculate confidence intervals for z. 
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Confidence intervals can also be constructed using z-score 
criteria, if one knows the population standard deviation. The 
format, calculations, and interpretation are all exactly the same, 
only replacing t* with z* and s ̅X with σ ̅X. 

Exercises – Ch. 11 

1. What is the difference between a z-test and a 1-sample 
t-test? 

2. What does a confidence interval represent? 
3. What is the relationship between a chosen level of 

confidence for a confidence interval and how wide that 
interval is? For instance, if you move from a 95% CI to a 
90% CI, what happens? Hint: look at the t-table to see how 
critical values change when you change levels of 
significance. 

4. Construct a confidence interval around the sample mean 
̅X = 25 for the following conditions: 

1. n = 25, s = 15, 95% confidence level 
2. n = 25, s = 15, 90% confidence level 
3. sX̅ = 4.5, α = 0.05, df = 20 
4. s = 12, df = 16 (yes, that is all the information you need) 

5. True or False: a confidence interval represents the most 
likely location of the true population mean. 

6. You hear that college campuses may differ from the 
general population in terms of political affiliation, and you 
want to use hypothesis testing to see if this is true and, if 
so, how big the difference is. You know that the average 
political affiliation in the nation is μ = 4.00 on a scale of 
1.00 to 7.00, so you gather data from 150 college students 
across the nation to see if there is a difference. You find 
that the average score is 3.76 with a standard deviation of 
1.52. Use a 1-sample t-test to see if there is a difference at 
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the α = 0.05 level. 
7. You hear a lot of talk about increasing global temperature, 

so you decide to see for yourself if there has been an 
actual change in recent years. You know that the average 
land temperature from 1951-1980 was 8.79 degrees Celsius. 
You find annual average temperature data from 1981-2017 
and decide to construct a 99% confidence interval 
(because you want to be as sure as possible and look for 
differences in both directions, not just one) using this data 
to test for a difference from the previous average. 

8. Determine whether you would reject or fail to reject the 
null hypothesis in the following situations: 

1. t = 2.58, N = 21, two-tailed test at α = 0.05 
2. t = 1.99, N = 49, one-tailed test at α = 0.01 
3. μ = 47.82, 99% CI = (48.71, 49.28) 
4. μ = 0, 95% CI = (-0.15, 0.20) 

9. You are curious about how people feel about craft beer, so 
you gather data from 55 people in the city on whether or 
not they like it. You code your data so that 0 is neutral, 
positive scores indicate liking craft beer, and negative 
scores indicate disliking craft beer. You find that the 
average opinion was ̅X= 1.10 and the spread was s = 0.40, 
and you test for a difference from 0 at the α = 0.05 level. 

10. You want to know if college students have more stress in 
their daily lives than the general population (μ = 12), so you 
gather data from 25 people to test your hypothesis. Your 
sample has an average stress score of ̅X = 13.11 and a 
standard deviation of s = 3.89. Use a 1-sample t-test to see 
if there is a difference. 
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Answers to Odd- Numbered Exercises – Ch. 
11 

1. A z-test uses population standard deviation for calculating 
standard error and gets critical values based on the standard 
normal distribution. A t-test uses sample standard deviation as 
an estimate when calculating standard error and gets critical 
values from the t-distribution based on degrees of freedom. 
3. As the level of confidence gets higher, the interval gets 
wider. In order to speak with more confidence about having 
found the population mean, you need to cast a wider net. This 
happens because critical values for higher confidence levels 
are larger, which creates a wider margin of error. 
5. False: a confidence interval is a range of plausible scores 
that may or may not bracket the true population mean. 
7. ̅X = 9.44, s = 0.35, s ̅X = 0.06, df = 36, t* = 2.719, 99% CI = 
(9.28, 9.60); CI does not bracket μ, reject null hypothesis. d = 
1.83 
9. Step 1: H0: μ = 0 “The average person has a neutral opinion 
towards craft beer”, HA: μ ≠ 0 “Overall people will have an 
opinion about craft beer, either good or bad.” 
Step 2: Two-tailed test, df = 54, t* = 2.009. 
Step 3: ̅X = 1.10, sX̅ = 0.05, t = 22.00. 
Step 4: t > t*, Reject H0. Based on opinions from 55 people, we 
can conclude that the average opinion of craft beer (̅X = 1.10) 
is positive, t(54) = 22.00, p < .05. Since the result is significant, 
we need an effect size: Cohen’s d = 2.75, which is a large effect. 
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12.  Chapter 12: 
Repeated Measures 
t-test 

So far, we have dealt with data measured on a single variable at 
a single point in time, allowing us to gain an understanding of 
the logic and process behind statistics and hypothesis testing. 
Now, we will look at a slightly different type of data that has 
new information we couldn’t get at before: change. Specifically, 
we will look at how the value of a variable, within people, 
changes across two timepoints. This is a very powerful thing 
to do, and, as we will see shortly, it involves only a very slight 
addition to our existing process and does not change the 
mechanics of hypothesis testing or formulas at all! 

Change and Differences 

Researchers are often interested in change over time. 
Sometimes we want to see if change occurs naturally, and 
other times we are hoping for change in response to some 
manipulation. In each of these cases, we measure a single 
variable at different times, and what we are looking for is 
whether or not we get the same score at time 2 as we did 
at time 1. This is a repeated sample research design, where 
a single group of individuals is obtained and each individual 
is measured in two treatment conditions  that are then 
compared.  Data consist of two scores for each individual. This 
means that all subjects participate in each treatment 
condition. Think about it like a pretest/posttest. 

332  |  Chapter 12: Repeated
Measures t-test



When we analyze data for a repeated research design, we 
calculate the difference between members of each pair of 
scores and then take the average of those differences. The 
absolute value of our measurements does not matter – all 
that matters is the change. If the average difference between 
scores in our sample is very large, compared to the difference 
between scores we would expect if the member was selected 
from the same population then we will conclude that the 
individuals were selected from different populations. 

Let’s look at an example: 

Before After Improvement 

6 9 3 

7 7 0 

4 10 6 

1 3 2 

8 10 2 

Table 1. Raw and difference scores before and after training. 
Table 1 shows scores on a quiz that five employees received 
before they took a training course and after they took the 
course. The difference between these scores (i.e. the score 
after minus the score before) represents improvement in the 
employees’ ability. This third column is what we look at when 
assessing whether or not our training was effective. We want 
to see positive scores, which indicate that the employees’ 
performance went up. What we are not interested in is how 
good they were before they took the training or after the 
training. Notice that the lowest scoring employee before the 
training (with a score of 1) improved just as much as the 
highest scoring employee before the training (with a score of 
8), regardless of how far apart they were to begin with. There’s 
also one improvement score of 0, meaning that the training 
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did not help this employee. An important factor in this is that 
the participants received the same assessment at both time 
points. To calculate improvement or any other difference 
score, we must measure only a single variable. 
When looking at change scores like the ones in Table 2, we 
calculate our difference scores by taking the time 2 score and 
subtracting the time 1 score. That is: 

The difference score formula:                                         
                                                                                                   
                                                                                                   
                                                                                 

                         
                                                                                                   
                                                                                                   
                                                                                                   
                                                    Note: T2 is the time 2 
variable; T1 is the time 1 variable 

Where XD is the difference score, XT1 is the score on the 
variable at time 1, and XT2 is the score on the variable at time 2. 
The difference score, XD (can also be noted as D for difference 
score), will be the data we use to test for improvement or 
change. Whether a difference score is positive or negative 
depends on the direction of change; it does not denote big or 
small, good or bad. The sign of the difference score (XD or D) 
denotes the direction of the change. 
We subtract time 2 minus time 1 for ease of interpretation; if 
scores get better, then the difference score will be positive. 
Similarly, if we’re measuring something like reaction time or 
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depression symptoms that we are trying to reduce, then 
better outcomes (lower scores) will yield negative difference 
scores. 
We can also test to see if people who are matched or paired in 
some way agree on a specific topic. We call this a matched 
design. For example, we can see if a parent and a child agree 
on the quality of home life, or we can see if two romantic 
partners agree on how serious and committed their 
relationship is. In these situations, we also subtract one score 
from the other to get a difference score. This time, however, it 
doesn’t matter which score we subtract from the other 
because what we are concerned with is the agreement. 

In both of these types of data, what we have are multiple scores 
on a single variable. That is, a single observation or data point 
is comprised of two measurements that are put together into 
one difference score. This is what makes the analysis of change 
unique – our ability to link these measurements in a 
meaningful way. This type of analysis would not work if we 
had two separate samples of people that weren’t related at the 
individual level, such as samples of people from different states 
that we gathered independently. Such datasets and analyses 
are the subject of the following chapter. 

A rose by any other name… 

It is important to point out that this form of t-test has been 
called many different things by many different people over the 
years: “matched pairs”, “paired samples”, “repeated measures”, 
“dependent measures”, “dependent samples”, and many 
others. What all of these names have in common is that they 
describe the analysis of two scores that are related in a 
systematic way within people or within pairs, which is what 
each of the datasets usable in this analysis have in common. As 
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such, all of these names are equally appropriate, and the choice 
of which one to use comes down to preference. In this text, we 
will refer to paired samples, though the appearance of any of 
the other names throughout this chapter should not be taken 
to refer to a different analysis: they are all the same thing. 

We are still working with t-tests.  In chapter 11, we 
compared a sample to a population mean.  For t-
tests in this chapter, we are comparing 2 groups of 
scores, yet both are from the same individuals.  We 
call this a dependent t-test or a paired t-test.  Think 
of it like you are having 2 cups of tea.

2 cups of tea for me: for a repeated measures 
design the same individuals are in both conditions 
for a t-test. Photo credit 
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Now that we have an understanding of what difference scores 
are and know how to calculate them, we can use them to test 
hypotheses. As we will see, this works exactly the same way as 
testing hypotheses about one sample mean with a t- statistic. 
The only difference is in the format of the null and alternative 
hypotheses, where for focus on the difference score. 

Hypotheses of Change and Differences for step 1 

When we work with difference scores, our research questions 
have to do with change. Did scores improve? Did symptoms 
get better? Did prevalence go up or down? Our hypotheses will 
reflect this. Remember that the null hypothesis is the idea that 
there is nothing interesting, notable, or impactful represented 
in our dataset. In a paired samples t-test, that takes the form of 
‘no change’. There is no improvement in scores or decrease in 
symptoms. 

Thus, our null hypothesis is: H0: There is no change or 
difference H0: μD = 0 

Let’s be clear, H0: μD = 0 does not say that everyone in the 
population will stay the same it only says that on average, the 
entire population will show a mean difference of 0. As with our 
other null hypotheses, we express the null hypothesis for 
paired samples t-tests in both words and mathematical 
notation. The exact wording of the written-out version should 
be changed to match whatever research question we are 
addressing (e.g. “ There is no change in ability scores after 
training”). However, the mathematical version of the null 
hypothesis is always exactly the same: the average change 
score is equal to zero. Our population parameter for the 
average is still μ, but it now has a subscript D to denote the 
fact that it is the average change score and not the average 
raw observation before or after our manipulation. Obviously 
individual difference scores can go up or down, but the null 
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hypothesis states that these positive or negative change 
values are just random chance and that the true average 
change score across all people is 0. 
Our alternative hypotheses will also follow the same format 
that they did before: they can be directional if we suspect a 
change or difference in a specific direction, or we can use an 
inequality sign to test for any change: 

HA: There is a change or difference HA: μD ≠ 0 
HA: The average score increases HA: μD > 0 
HA: The average score decreases HA: μD < 0 

Just as before, you choice of which alternative hypothesis to 
use should be specified before you collect data based on your 
research question and any evidence you might have that 
would indicate a specific directional (or non-directional) 
change.  Additionally, it should be noted that a non-directional 
research/alternative hypothesis is a more conservative 
approach when you have an expected direction for change. 

Choosing 1-tail vs 2-tail test 

How do you choose whether to use a one-tailed 
versus a two-tailed test? The two-tailed test is 
always going to be more conservative, so it’s always 
a good bet to use that one, unless you had a very 
strong prior reason for using a one-tailed test. In 
that case, you should have written down the 
hypothesis before you ever looked at the data. In 
Chapter 19, we will discuss the idea of pre-
registration of hypotheses, which formalizes the 
idea of writing down your hypotheses before you 
ever see the actual data. You should never make a 
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decision about how to perform a hypothesis test 
once you have looked at the data, as this can 
introduce serious bias into the results. 

We do have to make one main assumption when 
we use the randomization test, which we refer to as 
exchangeability. This means that all of the 
observations are distributed in the same way, such 
that we can interchange them without changing 
the overall distribution. The main place where this 
can break down is when there are related 
observations in the data; for example, if we had data 
from individuals in 4 different families, then we 
couldn’t assume that individuals were 
exchangeable, because siblings would be closer to 
each other than they are to individuals from other 
families. In general, if the data were obtained by 
random sampling, then the assumption of 
exchangeability should hold. 

Critical Values and Decision Criteria for step 2 

As with before, once we have our hypotheses laid out, we need 
to find our critical values that will serve as our decision criteria. 
This step has not changed at all from the last chapter. Our 
critical values are based on our level of significance (still usually 
α = 0.05), the directionality of our test (one-tailed or two-tailed), 
and the degrees of freedom, which are still calculated as df = n 
– 1. Because this is a t-test like the last chapter, we will find our 
critical values on the same t-table using the same process of 
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identifying the correct column based on our significance level 
and directionality and the correct row based on our degrees 
of freedom or the next lowest value if our exact degrees of 
freedom are not presented. After we calculate our test statistic, 
our decision criteria are the same as well: p < α or tobt > tcrit*. 

Test Statistic for step 3 

Our test statistic for our change scores follows exactly the same 
format as it did for our 1-sample t-test. In fact, the only 
difference is in the data that we use. For our change test, we 
first calculate a difference score as shown above. Then, we use 
those scores as the raw data in the same mean calculation, 
standard error formula, and t-statistic. Let’s look at each of 
these. 

Mean Difference (top of t-formula):                             
                                                                                                   

                         which can also be 

noted as                                            
                                                                                                   
                                                                                                   
                                                                            The mean 
difference score is calculated in the same way as any 
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other mean: sum each of the individual difference 
scores and divide by the sample size. 

Here we are using the subscript D to keep track of 
that fact that these are difference scores instead of 
raw scores; it has no actual effect on our calculation. 

Using this, we calculate the standard deviation of 
the difference scores the same way as well: 

Standard deviation for D (SD) and variance for D is 
sD

2:                                                         

 
 or may see SD noted as 

  where xD = D & 
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D̅ = MD                                                                                  
                                                                                                   
                                        Note: sD

2 = sD * sD and sD = 
√sD

2 

We will find the numerator, the Sum of Squares, 
using the same table format that we learned in 
chapter 3. Once we have our standard deviation, we 
can find the standard error: 

Standard Error                                                                   
                                                                                                   
                      Standard error of the mean differences 
(SMD) (bottom of t-formula):   

    which can also 

be noted as                                  
                                                                                                   
                          Note: the formula can also be noted as 
SMD or SD̅ and you can calculate it from the 
variance (√(s2/n)) or standard deviation( s/√n) 
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Finally, our test statistic t has the same structure as well: 

t-test for paired samples:                                               
                                                                                                   

               where 
μ(hyp) is expected to be 0 and is dropped from the 

calculation formula leaving  or 

                                                                       
                                                                                    Note: 
Both formulas are the same with the mean noted as 
MD or D̅ and the estimated standard error notes 
as SMD or SD 

Effect size:                                                                           
                                                                                                   
                                                                                                   
                                                                                                   
                          Cohen’s d                                                     
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                                    There are several different ways 
that the effect size can be quantified, which depend 
on the nature of the data. One of the most common 
measures of effect size is known as Cohen’s d             
                                                                   

                                                         
                                                                                                   
                            Note: MD is the mean of the 
difference scores.                                                                   
                                                                                                   
                                                                                                   
                                                                                Another 
way to examine effect size is to report the explained 
variance for the treatment effect, in other words the 
percentage of variance accounted for the 
treatment.  This is known as r2.                                         

                                                             
                                                                                                   
                                                                  Note: r2 is 
calculated when there is a reported effect (in other 
words, null is rejected). Df is the same df from step 2. 

As we can see, once we calculate our difference scores from our 
raw measurements, everything else is exactly the same. Let’s 
see an example. 
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Example: Increasing Satisfaction at Work 

Workers at a local company have been complaining 
that working conditions have gotten very poor, hours 
are too long, and they don’t feel supported by the 
management. The company hires a consultant to come 
in and help fix the situation before it gets so bad that 
the employees start to quit. The consultant first 
assesses 49 of the employee’s level of job satisfaction as 
part of focus groups used to identify specific changes 
that might help. The company institutes some of these 
changes, and six months later the consultant returns to 
measure job satisfaction again. Knowing that some 
interventions miss the mark and can actually make 
things worse, the consultant tests for a difference in 
either direction (i.e. and increase or a decreased in 
average job satisfaction) at the α = 0.05 level of 
significance. 

Step 1: State the Hypotheses 
In this case, we are hoping that the changes we 

made will improve employee satisfaction, and, because 
we based the changes on employee recommendations, 
we have good reason to believe that they will. However 
we will take a conservative approach and will use a 
two-tail alternative hypothesis. 

Thus, we state our null and alternative hypotheses as 
H0: There is no change in average job 

satisfaction H0: μD = 0 
HA: There is a change in average job 

satisfaction HA: μD ≠ 0 
Step 2: Find critical value 
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Our critical values will once again be based on our 
level of significance, which we know is α = 0.05, the 
directionality of our test, which is two-tailed, and our 
degrees of freedom. For our dependent-samples t-test, 
the degrees of freedom are still given as df = n – 1. For 
this problem, we have 49 people, so our degrees of 
freedom are 48.  Our table does not have 48, so we go 
with the closest lower value (40). Going to our t-table, 
we find that the critical value is t* = 2.021. As shown in 
Figure 1, the cut off or critical value helps with decision 
making in step 4. 

Figure 1. Critical region for two-tailed t-test at α = 0.05 
Step 3: Calculate test statistic 
Now that the criteria are set, it is time to calculate the 

test statistic. The data obtained by the consultant 
found that the difference scores from time 1 to time 2 
had a mean of MD or D̅ = 2.96 and a standard 
deviation of sD = 2.85. Using this information, plus the 
size of the sample (n = 49), we first calculate the 
standard error: 
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 Plugging in the values we get 
2.85/(√49) = 2.85/7= 0.41 

Now, we can put that value sD̅ = 0.41, along with our 
sample mean (2.96), into the formula for t and calculate 
the test statistic: 

 = 2.96/0.41 = 7.22 
Notice that, because the null hypothesis value of a 

dependent samples t-test is always 0, we can simply 
divide our obtained sample mean by the standard 
error. 

Step 4: Make a decision 
We have obtained a test statistic of t = 7.22 that we 

can compare to our previously established critical value 
of t* = 2.021. 7.22 is larger than 2.021, so t > t* and we 
reject the null hypothesis: 

Reject H0. Based on the sample data from 49 
workers, we can say that the intervention 
statistically significantly improved job 
satisfaction (̅D= 2.96) among the workers, t(48) 
= 7.22, p < 0.05. 

Because this result was statistically significant, we 
will want to calculate Cohen’s d as an effect size using 
the same format as we did for the last t-test: 

 where the MD or D̅ = 2.96 
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and a standard deviation of s = 2.85.  Plugging in the 
values we get d=2.96/2.85=1.04 which is a large effect 
size.  We could also calculate r2 for effect size. 

 where t2 = 7.22*7.22 = 52.13 and df 
= 48. Then plugging in, r2 = 52.13/(52.13+48) = .52. This 
can be interpreted as 52% o the variance in worker job 
satisfaction is due to changes the company made. 

Hopefully the above example made it clear that running a 
dependent samples t-test to look for differences before and 
after some treatment works exactly the same way as a regular 
1-sample t-test does from chapter 11 (which was just a small 
change in how z-tests were performed in chapter 10). At this 
point, this process should feel familiar, and we will continue 
to make small adjustments to this familiar process as we 
encounter new types of data to test new types of research 
questions. 

Confidence Intervals                                                         
                                                                                                   

                    Last chapter, CI = but now 
the mean is the mean difference ( D̅ or MD) and 
s/√n becomes sD̅                                                               
                                                                                                   
                                                                          Our adjusted 
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CI formula for paired or dependent t-test:                     
                                                                                        CI = 
D̅̅ ± t(sD̅̅ )                                                                           
                                                                                                   
        Note: We still calculate an upper bound and 
lower bound value and t is still the critical value t. CI 
formula is very similar using the notations for 
standard error. CI still notated as CI = (LB, UB). 

 

Example with Confidence Interval 
Hypothesis Testing: Bad Press 

Let’s say that a bank wants to make sure that their new 
commercial will make them look good to the public, so they 
recruit 7 people to view the commercial as a focus group. The 
focus group members fill out a short questionnaire about how 
they view the company, then watch the commercial and fill out 
the same questionnaire a second time. The bank really wants 
to find significant results, so they test for a change at α = 0.05. 
However, they use a 2-tailed test since they know that past 
commercials have not gone over well with the public, and they 
want to make sure the new one does not backfire. They decide 
to test their hypothesis using a confidence interval to see just 
how spread out the opinions are. As we will see, confidence 
intervals work the same way as they did before, just like with 
the test statistic. 
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Step 1: State the Hypotheses 

As always, we start with hypotheses, and with confidence 
interval hypothesis test, we must use a 2-tail test. 

H0: There is no change in how people view the bank 
H0: μD = 0 

HA: There is a change in how people view the bank 
HA: μD ≠ 0 

Step 2: Find the Critical Values 

Just like with our regular hypothesis testing procedure, we will 
need critical values from the appropriate level of significance 
and degrees of freedom in order to form our confidence 
interval. Because we have 7 participants, our degrees of 
freedom are df = 6. From our t-table, we find that the critical 
value corresponding to this df at this level of significance is t* = 
2.447. 

Step 3: Calculate the Confidence Interval 

The data collected before (time 1) and after (time 2) the 
participants viewed the commercial is presented in Table 1. 
In order to build our confidence interval, we will first have to 
calculate the mean and standard deviation of the difference 
scores, which are also in Table 1. As a reminder, the difference 
scores (D̅ or MD) are calculated as Time 2 – Time 1. 
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Time 
1 

Time 
2 D̅ 

3 2 -1 

3 6 3 

5 3 -2 

8 4 -4 

3 9 6 

1 2 1 

4 5 1 

Table 1. Opinions of the bank 
The mean of the difference scores is: D̅ = 4/7 = .57 

The standard deviation will be solved by first using the Sum of 
Squares Table: 

D D –D̅ (D –D̅)2 

-1 -1.57 2.46 

3 2.43 5.90 

-2 -2.57 6.60 

-4 -4.57 20.88 

6 5.43 29.48 

1 0.43 0.18 

1 0.43 0.18 

Σ = 4 Σ = 0 Σ = 65.68 (our SS) 
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s = √SS/df where SS = 65.68 and df = n-1 = 7-1 = 6 
s = √65.68/6 = √10.94 = 3.308 
Finally, we find the standard error (sD̅) taking s = 3.308 and n 
= 7. 
sD̅ = 3.308/√7 = 1.25 
We now have all the pieces needed to compute our 
confidence interval: 
95% CI = D̅ ± t(sD̅ ) 
Upper Bound (UB) = 0.57 + 1.943(1.25) = 0.57 + 2.43 = 3.00 
Lower Bound (LB) = 0.57 − 1.943(1.25) = 0.57 − 2.43 =  −1.86 
95% CI = (LB, UB) = (−1.86, 3.00) 

Step 4: Make the Decision 

Remember that the confidence interval represents a range 
of values that seem plausible or reasonable based on our 
observed data. The interval spans -1.86 to 3.00, which includes 
0, our null hypothesis value. Because the null hypothesis value 
is in the interval, it is considered a reasonable value, and 
because it is a reasonable value, we have no evidence against 
it. We fail to reject the null hypothesis. 

Fail to Reject H0. Based on our focus group of 7 people, 
we cannot say that the average change in opinion (D̅ 
= 0.57) was any better or worse after viewing the 
commercial, CI: (-1.86, 3.00). 

It is optional to calculate effect size. Performing Cohen’s d = 
D̅/s = .57/3.308 = .17 which indicates a possible Type II error 
(very small sample size).As with before, we only report the 
confidence interval to indicate how we performed the test. 

Assumptions of paired t-test 

Assumptions are conditions that must be met in order for our 
hypothesis testing conclusion to be valid. [Important: If the 
assumptions are not met then our hypothesis testing 
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conclusion is not likely to be valid. Testing errors can still occur 
even if the assumptions for the test are met.] 

Recall that inferential statistics allow us to make inferences 
(decisions, estimates, predictions) about a population based 
on data collected from a sample. Recall also that an inference 
about a population is true only if the sample studied is 
representative of the population. A statement about a 
population based on a biased sample is not likely to be true. 

Assumption 1: Individuals in the sample were selected 
randomly and independently, so the sample is highly likely to 
be representative of the larger population. 

•        Random sampling ensures that each member of the 
population is equally likely to be selected. 

•        An independent sample is one which the selection of 
one member has no effect on the selection of any other. 

Assumption 2: The distribution of sample differences (DSD) 
is a normal, because we drew the samples from a population 
that was normally distributed. 

• This assumption is very important because we are 
estimating probabilities using the t- table – which provide 
accurate estimates of probabilities for events distributed 
normally. 

Assumption 3: Sampled populations have equal variances or 
have homogeneity of variance. 
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Advantages & Disadvantages of using 
a repeated measures design 

Advantages. Repeated measure designs reduce 
the probability of Type I errors when compared with 
independent sample designs because repeated 
measure t-tests reduce the probability that we will 
get a statistically significant difference that is due to 
an extraneous variable that differed between groups 
by chance (due to some other factor than the one in 
which we are interested). 

Repeated measure designs are also more 
powerful (sensitive) than independent sample 
designs because two scores from each person are 
compared so each person serves as his or her own 
control group (we analyze the difference between 
scores). A special type of repeated measures design 
is known as the matched pairs design. If we are 
designing a study and suspect that there are 
important factors that could differ between our 
groups even if we randomly select and assign 
subjects, then we may use this type of design. 

Because members of a matched-pair are similar 
to each other there is greater likelihood of our 
statistical test finding an “effect” when one person is 
present (power) in a repeated sample design as 
compared to a two-repeated sample design (in 
which subjects for two groups are picked randomly 
and independently – not matched on any traits). 
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Disadvantages. Repeated measure t-tests are very 
sensitive to outside influences and treatment 
influences. Outside Influences refers to factors 
outside of the experiment that may interfere with 
testing an individual across treatment/trials. 
Examples include mood or health or motivation of 
the individual participants. Think about it, if a 
participant tries really hard during the pretest but 
does not try very hard during the posttest, these 
differences can create problems later when 
analyzing the data. 

Treatment Influences refers to the events that 
happen within the testing experience that interferes 
with how the data are collected. Three of the most 
common treatment influences are: 1. Practice 
effects, 2. Fatigue effects, and 3. Order effects. 

 

Practice effect is present where participants 
perform a task better in later conditions because 
they have had a chance to practice it. Another type 
is a fatigue effect, where participants perform a 
task worse in later conditions because they become 
tired or bored. Order effects refer to differences in 
research participants’ responses that result from the 
order (e.g., first, second, third) in which the 
experimental materials are presented to them. 

Imagine, for example, that participants judge the 
guilt of an attractive defendant and then judge the 
guilt of an unattractive defendant. If they judge the 
unattractive defendant more harshly, this might be 
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because of his unattractiveness. But it could be 
instead that they judge him more harshly because 
they are becoming bored or tired. In other words, 
the order of the conditions is a confounding 
variable. The attractive condition is always the first 
condition and the unattractive condition the 
second. Thus any difference between the conditions 
in terms of the dependent variable could be caused 
by the order of the conditions and not the 
independent variable itself. 

There is a solution to the problem of order effects, 
however, that can be used in many situations. It is 
counterbalancing, which means testing different 
participants in different orders. For example, some 
participants would be tested in the attractive 
defendant condition followed by the unattractive 
defendant condition, and others would be tested in 
the unattractive condition followed by the attractive 
condition. With three conditions, there would be six 
different orders (ABC, ACB, BAC, BCA, CAB, and 
CBA), so some participants would be tested in each 
of the six orders. With counterbalancing, 
participants are assigned to orders randomly, using 
the techniques we have already discussed. Thus 
random assignment plays an important role in 
within-subjects designs just as in between-subjects 
designs. Here, instead of randomly assigning to 
conditions, they are randomly assigned to different 
orders of conditions. In fact, it can safely be said that 
if a study does not involve random assignment in 
one form or another, it is not an experiment. 
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Because the repeated-measures design requires 
that each individual participate in more than one 
treatment, there is always the risk that exposure to 
the first treatment will cause a change in the 
participants that influences their scores in the 
second treatment that have nothing to do with the 
intervention.  For example, if students are given the 
same test before and after the intervention the 
change in the posttest might be because the 
student got practice taking the test, not because 
the intervention was successful. 

 

Learning Objectives 

Having read this chapter, a student should be able to: 

• identify when appropriate to calculate a paired or 
dependent t-test 

• perform a hypothesis test using the paired or dependent 
t-test 

• compute and interpret effect size for dependent or paired 
t-test 

• list the assumptions for running a paired or dependent t-
test 

• list the advantages and disadvantages for a repeated 
measures design 
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Exercises – Ch. 12 

1. What is the difference between a 1-sample t-test and a 
dependent-samples t– test? How are they alike? 

2. Name 3 research questions that could be addressed using 
a dependent- samples t-test. 

3. What are difference scores and why do we calculate 
them? 

4. Why is the null hypothesis for a dependent-samples t-test 
always μD = 0? 

5. A researcher is interested in testing whether explaining 
the processes of statistics helps increase trust in computer 
algorithms. He wants to test for a difference at the α = 0.05 
level and knows that some people may trust the 
algorithms less after the training, so he uses a two-tailed 
test. He gathers pre- post data from 35 people and finds 
that the average difference score is 12.10 with a standard 
deviation (s) is 17.39. Conduct a hypothesis test to answer 
the research question. 

6. Decide whether you would reject or fail to reject the null 
hypothesis in the following situations: 

1. M⯑̅ = 3.50, s = 1.10, n = 12, α = 0.05, two-tailed test 
2. 95% CI = (0.20, 1.85) 
3. t = 2.98, t* = -2.36, one-tailed test to the left 
4. 90% CI = (-1.12, 4.36) 

7. Calculate difference scores for the following data: 

358  |  Chapter 12: Repeated Measures t-test



Time 1 Time 2 XD or D 

61 83 

75 89 

91 98 

83 92 

74 80 

82 88 

98 98 

82 77 

69 88 

76 79 

91 91 

70 80 

8. You want to know if an employee’s opinion about an 
organization is the same as the opinion of that employee’s 
boss. You collect data from 18 employee-supervisor pairs and 
code the difference scores so that positive scores indicate that 
the employee has a higher opinion and negative scores 
indicate that the boss has a higher opinion (meaning that 
difference scores of 0 indicate no difference and complete 
agreement). You find that the mean difference score is 
̅⯑̅⯑̅̅ = -3.15 with a standard deviation of sD = 1.97. Test this 
hypothesis at the α = 0.01 level. 

9. Construct confidence intervals from a mean = 1.25, 
standard error of 0.45, and df = 10 at the 90%, 95%, and 99% 
confidence level. Describe what happens as confidence 
changes and whether to reject H0. 

10.A professor wants to see how much students learn over the 
course of a semester. A pre-test is given before the class begins 
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to see what students know ahead of time, and the same test is 
given at the end of the semester to see what students know at 
the end. The data are below. Test for an improvement at the α = 
0.05 level. Did scores increase? How much did scores increase? 
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Pretest Posttest XD 

90 8 

60 66 

95 99 

93 91 

95 100 

67 64 

89 91 

90 95 

94 95 

83 89 

75 82 

87 92 

82 83 

82 85 

88 93 

66 69 

90 90 

93 100 

86 95 

91 96 
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Answers to Odd- Numbered Exercises – Ch. 
12 

1. A 1-sample t-test uses raw scores to compare an average to a 
specific value. A dependent samples t-test uses two raw scores 
from each person to calculate difference scores and test for an 
average difference score that is equal to zero. The calculations, 
steps, and interpretation is exactly the same for each. 
3. Difference scores indicate change or discrepancy relative to 
a single person or pair of people. We calculate them to 
eliminate individual differences in our study of change or 
agreement. 
5. Step 1: H0: μ = 0 “The average change in trust of algorithms is 
0”, HA: μ ≠ 0 “People’s opinions of how much they trust 
algorithms changes.” 
Step 2: Two-tailed test, df = 34, t* = 2.032. 
Step 3: ̅D = 12.10, s⯑̅ = 2.94, t = 4.12. 
Step 4: t > t*, Reject H0. Based on opinions from 35 people, we 
can conclude that people trust algorithms more (̅D = 12.10) 
after learning statistics, t(34) = 4.12, p < .05. Since the result is 
significant, we need an effect size: Cohen’s d = 0.70, which is a 
moderate to large effect. 

7. See table last column. 
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Time 1 Time 2 D or XD 

61 83 22 

75 89 14 

91 98 7 

83 92 9 

74 80 6 

82 88 6 

98 98 0 

82 77 -5 

69 88 19 

76 79 3 

91 91 0 

70 80 10 

9. At the 90% confidence level, t* = 1.812 and CI = (0.43, 2.07) so 
we reject H0. At the 95% confidence level, t* = 2.228 and CI = 
(0.25, 2.25) so we reject H0. At the 99% confidence level, t* = 3.169 
and CI = (-0.18, 2.68) so we fail to reject H0. As the confidence 
level goes up, our interval gets wider (which is why we have 
higher confidence), and eventually we do not reject the null 
hypothesis because the interval is so wide that it contains 0. 
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13.  Chapter 13: 
Independent Samples 

We have seen how to compare a single mean against a given 
value and how to utilize difference scores to look for 
meaningful, consistent change via a single mean difference 
using a repeated measures design. Now, we will learn how 
to compare two separate means from separate groups that 
do not overlap to see if there is a difference between them. 
The process of testing hypotheses about two means is exactly 
the same as it is for testing hypotheses about a single mean, 
and the logical structure of the formulae is the same as well. 
However, we will be adding a few extra steps this time to 
account for the fact that our data are coming from different 
sources. 

Difference of Means 

Last chapter, we learned about mean differences, that is, the 
average value of difference scores. Those difference scores 
came from ONE group and TWO time points (or two 
perspectives). Now, we will deal with the difference of the 
means, that is, the average values of separate groups that are 
represented by separate descriptive statistics. This analysis 
involves TWO groups and ONE time point. As with all of our 
other tests as well, both of these analyses are concerned with a 
single variable. 

It is very important to keep these two tests separate and 
understand the distinctions between them because they 
assess very different questions and require different 
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approaches to the data. When in doubt, think about how the 
data were collected and where they came from. If they came 
from two time points with the same people (sometimes 
referred to as “longitudinal” data), you know you are working 
with repeated measures data (the measurement literally was 
repeated) and will use a paired/dependent samples t-test. If 
it came from a single time point that used separate groups, 
you need to look at the nature of those groups and if they 
are related. Can individuals in one group being meaningfully 
matched up with one and only one individual from the other 
group? For example, are they a romantic couple? If so, we call 
those data matched and we use a matched pairs/dependent 
samples t-test. However, if there’s no logical or meaningful way 
to link individuals across groups, or if there is no overlap 
between the groups, then we say the groups are independent 
and use the independent samples t-test, the subject of this 
chapter. 

Research Questions about Independent 
Means 

An independent samples t-test is also designed to compare 
populations. If we want to know if two populations differ and 
we do not know the mean of either population, we take a 
sample from each and then conduct an independent sample 
t-test. Many research ideas in the behavioral sciences and other 
areas of research are concerned with whether or not two 
means are the same or different. Logically, we can then say 
that these research questions are concerned with group mean 
differences. That is, on average, do we expect a person from 
Group A to be higher or lower on some variable that a person 
from Group B. In any time of research design looking at group 
mean differences, there are some key criteria we must 
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consider: the groups must be mutually exclusive (i.e. you can 
only be part of one group at any given time) and the groups 
have to be measured on the same variable (i.e. you can’t 
compare personality in one group to reaction time in another 
group since those values would not be the same anyway). 

Figure 1. Collecting data from 2 different groups. 
If the difference between the sample means given in the 

problem is very large compared to the differences we would 
expect to see between samples drawn from the same 
population, then we will conclude that the two samples must 
be from different populations. The language of the two 
independent samples t-tests involves probability statements 
because we know that there is variability in the samples that 
we draw from populations. If we were to draw two samples 
from a particular population we would expect a difference 
between the means of the samples by chance alone. In an 
independent sample situation we are given two sample means 
and understand that they are probably not equal BUT this does 
NOT provide evidence that the samples are from different 
populations. In independent samples t-tests we must estimate 
the probability of drawing particular differences between 
sample means from a population before deciding whether the 
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difference between the sample means given in the problem is 
sufficiently large to lead us to conclude that the samples must 
be from different populations. 
Let’s look at one of the most common and logical examples: 
testing a new medication. When a new medication is 
developed, the researchers who created it need to 
demonstrate that it effectively treats the symptoms they are 
trying to alleviate. The simplest design that will answer this 
question involves two groups: one group that receives the new 
medication (the “treatment” group) and one group that 
receives a placebo (the “control” group). Participants are 
randomly assigned to one of the two groups (remember that 
random assignment is the hallmark of a true experiment), and 
the researchers test the symptoms in each person in each 
group after they received either the medication or the 
placebo. They then calculate the average symptoms in each 
group and compare them to see if the treatment group did 
better (i.e. had fewer or less severe symptoms) than the control 
group. 
In this example, we had two groups: treatment and control. 
Membership in these two groups was mutually exclusive: each 
individual participant received either the experimental 
medication or the placebo. No one in the experiment received 
both, so there was no overlap between the two groups. 
Additionally, each group could be measured on the same 
variable: symptoms related to the disease or ailment being 
treated. Because each group was measured on the same 
variable, the average scores in each group could be 
meaningfully compared. If the treatment was ineffective, we 
would expect that the average symptoms of someone 
receiving the treatment would be the same as the average 
symptoms of someone receiving the placebo (i.e. there is no 
difference between the groups). However, if the treatment 
WAS effective, we would expect fewer symptoms from the 
treatment group, leading to a lower group average.Now let’s 
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look at an example using groups that already exist. A 
common, and perhaps salient, question is how students feel 
about their job prospects after graduation. Suppose that we 
have narrowed our potential choice of college down to two 
universities and, in the course of trying to decide between the 
two, we come across a survey that has data from each 
university on how students at those universities feel about 
their future job prospects. As with our last example, we have 
two groups: University A and University B, and each 
participant is in only one of the two groups (assuming there 
are no transfer students who were somehow able to rate both 
universities). Because students at each university completed 
the same survey, they are measuring the same thing, so we 
can use a t-test to compare the average perceptions of 
students at each university to see if they are the same. If they 
are the same, then we should continue looking for other 
things about each university to help us decide on where to go. 
But, if they are different, we can use that information in favor 
of the university with higher job prospects. 

As we can see, the grouping variable we use for an 
independent samples t-test can be a set of groups we create 
(as in the experimental medication example) or groups that 
already exist naturally (as in the university example). There are 
countless other examples of research questions relating to two 
group means, making the independent samples t-test one of 
the most widely used analyses around. 

Independent samples t-test                                           
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                                                            Photo credit                
                                                                                                   
                                                                              We know 
can say tea for two, as the saying goes, one for me 
and one for you, is for two different people having 
tea at the same time.  This follows the independent 
t-test having two separate groups at the same time 
point. 
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Setting up step 1 

In chapter 12, it is the same participants tracked over 2 
timepoints for the paired samples t-test.  This is an example 
of a repeated measures or within-group design.  This chapter 
focuses on two different samples compared, using 
independent samples t-test, known as a between-group 
design.  In setting up step 1, there will be a few variations to 
how to set up the null and alternative (H1 or HA) hypotheses. 
You can see these are all ways to set up the two types of 
research hypotheses (three hypotheses for the 2 directional 
and 1 for the non-directional).  You can set it up by comparing 
both groups (first 2 columns) or examining differences (which 
is similar to how we set up the top of your t-formula). 
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Research Question 
Hypotheses in 3 
ways 

Are male scores 
higher than female 
scores? 

(between-group 
design) 

 

H0: μM – μF ≤ 0 
H1: μM – μF > 0 

in other words: 

H0: μM ≤ μF 
H1: μM > μF 

in other words: 

H0: μM ≤ μF 
H1: μM > μF 

Are male scores 
lower than female 
scores? 

(between-group 
design) 

H0: μM – μF ≥ 0 

H1: μM – μF < 0 
 

in other words: 

H0: μM ≥ μF 
H1: μM < μF 

 

in other words: 
H0: μM ≥ μF 
H1: μM < μF 
 

Are male scores 
different from 
female scores? 

(between-group 
design) 

H0: μM – μF= 0 

H1: μM – μF ≠ 0 
 

in other words: 

H0: μM = μF 
H1 μM ≠ μF 

 

in other words: 
H0: μM = μF 
H1: μM ≠ μF 
 

Do athlete 
performance 
improve after 
training? 

(within-group 
design) 

H0: μD ≤ 0 

H1: μD > 0 

 

in other words: 
H0: μ1 ≤ μ2 
H1: μ1 > μ2 

in other words: 

H0: μ1 – μ2 ≤ 0 
H1: μ1 – μ2 > 0 

Do athlete reaction 
times decrease after 
training? 

(within-group 
design) 

 

H0: μD ≥ 0 
H1: μD < 0 

in other words: 

H0: μ1 ≥ μ2 
H1: μ1 < μ2 

in other words: 

H0: μ1 – μ2 ≥ 0 
H1: μ1 – μ2 < 0 

Does training have 
an effect on athlete 
reaction times? 

(within-group 
design) 

 

H0: μD = 0 
H1: μD ≠ 0 

in other words: 

H0: μ1 = μ2 
H1 μ1 ≠ μ2 

in other words: 

H0: μ1 – μ2= 0 
H1: μ1 – μ2 ≠ 0 

Table 1. Examples of hypotheses set up for 2 samples based on 
between-group and within-group design. 
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Hypotheses and Decision Criteria 

The process of testing hypotheses using an independent 
samples t-test is the same as it was in the last three chapters, 
and it starts with stating our hypotheses and laying out the 
criteria we will use to test them. 
Our null hypothesis for an independent samples t-test is the 
same as all others: there is no difference. The means of the two 
groups are the same under the null hypothesis, no matter how 
those groups were formed. Mathematically, this takes on two 
equivalent forms: 

H0: µ1 = µ2 or H0: µ1 − µ2 = 0 
Both of these formulations of the null hypothesis tell us 
exactly the same thing: that the numerical value of the means 
is the same in both groups. This is more clear in the first 
formulation, but the second formulation also makes sense 
(any number minus itself is always zero) and helps us out a 
little when we get to the math of the test statistic. Either one 
is acceptable and you only need to report one. The English 
interpretation of both of them is also the same: H0: There is no 
difference between the means of the two groups. 

Our alternative hypotheses are also unchanged: we simply 
replace the equal sign (=) with one of the three inequalities (>, 
<, ≠): 

HA: µ1 > µ2 or µ1 − µ2 > 0; HA: Group 1 is more than/
stronger than group 2. 

HA: µ1 < µ2 or µ1 − µ2 < 0; HA: Group 1 is less than/
weaker than group 2. 

HA: µ1 ≠ µ2 or µ1 − µ2 ≠ 0; HA: There is no difference 
between the two groups. 

Whichever formulation you chose for the null hypothesis 
should be the one that connects to the research or alternative 
hypothesis. Notice that we are now dealing with two means 
instead of just one, so it will be very important to keep track of 
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which mean goes with which population and, by extension, 
which dataset and sample data. We use subscripts to 
differentiate between the populations, so make sure to keep 
track of which is which. If it is helpful, you can also use more 
descriptive subscripts. 
To use the experimental medication example: 

H0: There is no difference between the means of the 
treatment (T) and control (C) groups.  H0: µT = µC 

HA: There is a difference between the means of the 
treatment (T) and control (C) group. HA: µT ≠ µC 

Step 2 

Once we have our hypotheses laid out, we can set 
our criteria to test them using the same three pieces 
of information as before: significance level (α), 
directionality (left, right, or two-tailed), and degrees of 
freedom.  We will use the same critical value t table, 
but a new degrees of freedom for the independent 
samples t-test. 

degrees of freedom for independent samples t-
test                                                                                           

                            
where n1 represents the sample size for group 1 and 
n2 represents the sample size for group 2.  We have 
2 separate groups, each with a calculated degrees of 
freedom. 

This looks different than before, but it is just adding 
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the individual degrees of freedom from each group 
(n – 1) together. Notice that the sample sizes, n, also 
get subscripts so we can tell them apart. For an 
independent samples t-test, it is often the case that 
our two groups will have slightly different sample 
sizes, either due to chance or some characteristic 
of the groups themselves. Generally, this is not as 
issue, so long as one group is not massively larger 
than the other group, and there are not large 
differences in the variance of each group (more on 
this later). 

Independent Samples t-statistic 

The test statistic for our independent samples t-test takes on 
the same logical structure and format as our other t-tests: our 
observed effect minus our null hypothesis value, all divided by 
the standard error: 

Independent samples t-test 

M1 is the sample mean for group 1 and 
M2 is the sample mean for group 2. This 
looks like more work to calculate, but 
remember that our null hypothesis 
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states that the quantity μ1 – μ2 = 0, so we 
can drop that out of the equation and 
are left with: 

Our standard error in the denominator (bottom of 
the formula) is denoting what it is the standard error 
of (derived from 2 samples). Because we are dealing 
with the difference between two separate means, 
rather than a single mean or single mean of 
difference scores, we put both means in the 
subscript. 

Calculating our standard error, as we will see next, 
is where the biggest differences between this t-test 
and other t-tests appears. However, once we do 
calculate it and use it in our test statistic, everything 
else goes back to normal. Our decision criteria is still 
comparing our obtained test statistic to our critical 
value, and our interpretation based on whether or 
not we reject the null hypothesis is unchanged as 
well. 
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Standard Error and Pooled Variance 

Recall that the standard error is the average distance between 
any given sample mean and the center of its corresponding 
sampling distribution, and it is a function of the standard 
deviation of the population (either given or estimated) and the 
sample size. This definition and interpretation hold true for 
our independent samples t-test as well, but because we are 
working with two samples drawn from two populations, we 
have to first combine their estimates of standard deviation – or, 
more accurately, their estimates of variance – into a single value 
that we can then use to calculate our standard error. 

The combined estimate of variance using the information from 
each sample is called the pooled variance and is denoted Sp2; 
the subscript p serves as a reminder indicating that it is the 
pooled variance. The term “pooled variance” is a literal name 
because we are simply pooling or combining the information 
on variance – the Sum of Squares and Degrees of Freedom 
– from both of our samples into a single number. The result 
is a weighted average of the observed sample variances, the 
weight for each being determined by the sample size, and 
will always fall between the two observed variances. The 
computational formula for the pooled variance is: 

 

Pooled variance used to get to our new 
standard error formula 

376  |  Chapter 13: Independent Samples



                                                                                 
                              This formula can look 
daunting at first, but it is in fact just a 
weighted average. Even more 
conveniently, some simple algebra can be 
employed to greatly reduce the 
complexity of the calculation. The simpler 
and more appropriate formula to use 
when calculating pooled variance is: 

Both formula will give you the same pooled 
variance.  The most common formula used is the SS/
df (which is how we typically think about variance). 
Using the SS/df formula, it’s very simple to see that 
we are just adding together the same pieces of 
information we have been calculating since chapter 
3. 

Once we have our pooled variance calculated, we can drop it 
into the equation for our standard error: 
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Standard error for independent t-test                         
                                                                                                   
                     

Once again, although this formula may 
seem different than it was before, in reality 
it is just a different way of writing the 
same thing. Think back to the standard 
error options presented in chapter 9, when 
our standard error was 

Looking at that, we can now see that, once again, we are simply 
adding together two pieces of information: no new logic or 
interpretation required. Once the standard error is calculated, 
it goes in the denominator of our test statistic, as shown above 
and as was the case in all previous chapters. Thus, the only 
additional step to calculating an independent samples 
t-statistic is computing the pooled variance. Let’s see an 
example in action. 
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Example: Movies and Mood 

We are interested in whether the type of movie 
someone sees at the theater affects their mood when 
they leave. We decide to ask people about their mood 
as they leave one of two movies: a comedy (group 1, n = 
35) or a horror film (group 2, n = 29). Our data are coded 
so that higher scores indicate a more positive mood. 
We have good reason to believe that people leaving the 
comedy will be in a better mood, so we use a one-tailed 
test at α = 0.05 to test our hypothesis. 

Step 1: State the Hypotheses 

As always, we start with hypotheses: 

H0: There is no difference in 
average mood between the two 

movie types 

H0: μ1 – μ2 = 0 or H0: μ1 = μ2 

HA: The comedy film will give a 
better average mood than the 

horror film 

HA: μ1 – μ2 > 0 or HA: μ1 > μ2 

Notice that in the first formulation of the alternative 
hypothesis we say that the first mean minus the 
second mean will be greater than zero. This is based on 
how we code the data (higher is better), so we suspect 
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that the mean of the first group will be higher. Thus, we 
will have a larger number minus a smaller number, 
which will be greater than zero. Be sure to pay 
attention to which group is which and how your data 
are coded (higher is almost always used as better 
outcomes) to make sure your hypothesis makes sense! 

Step 2: Find the Critical Values 

Just like before, we will need critical values, 
which come from out t-table. In this 
example, we have a one-tailed test at α = 0.05 
and expect a positive answer (because we 
expect the difference between the means to 
be greater than zero). Our degrees of 
freedom for our independent samples t-test 
is just the degrees of freedom from each 
group added together: 35 + 29 – 2 = 62. From 
our t-table, we find that our critical value is t* 
= 1.671. Note: because 62 does not appear on 
the critical values table, we use the next 
lowest value, which in this case is 60. 

Step 3: Compute the Test Statistic 

The data from our two groups are 
presented in the tables below. Table 1 shows 
the summary values for the Comedy group, 
and Table 2 shows the summary values for 
the Horror group (the end of the chapter 
contains the raw data). 
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Group 1: Comedy Film 

n M SS 

35 ΣX/n = 840/35 Σ(X − ̅X)2=5061.60 

Table 1. Raw scores and Sum of Squares for Group 1 

Group 2: Horror Film 

n M SS 

29 ΣX/n = 478.6/29 = 
16.5 

Σ(X − ̅X)2 = 
3896.45 

Table 2. Raw scores and Sum of Squares for Group 1. 

the Sum of Squares for each group: SS1 = 
5061.60 and SS2 = 3896.45. These values have 
all been calculated and take on the same 
interpretation as they have since chapter 3. 
Before we move on to the pooled variance 
that will allow us to calculate standard error, 
let’s compute our standard deviation for each 
group; even though we will not use them in 
our calculation of the test statistic, they are 
still important descriptors of our data: 
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Now we can move on to our new 
calculation, the pooled variance, which is just 
the Sums of Squares that we calculated from 
our table and the degrees of freedom, which 
is just n – 1 for each group: 

As you can see, if you follow the regular process of 
calculating standard deviation using the Sum of 
Squares table, finding the pooled variance is very easy. 
Now we can use that value to calculate our standard 
error, the last step before we can find our test statistic: 

382  |  Chapter 13: Independent Samples



Finally, we can use our standard error and the means 
we calculated earlier to compute our test statistic. 

      

Now we can move on to the final step of the 
hypothesis testing procedure. 

Step 4: Make the Decision 

Our test statistic has a value of t = 2.48, 
and in step 2 we found that the critical 
value is t* = 1.671. 2.48 > 1.671, so we reject 
the null hypothesis: 

Reject H0. Based on our 
sample data from people 
who watched different kinds 
of movies, we can say that 
the average mood after a 
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comedy movie (M2= 24.00) is 
better than the average 
mood after a horror movie 
(M2 = 16.50), t(62) = 2.48, p < 
.05. 

Effect Sizes and Confidence Intervals 

We have seen in previous chapters that even a statistically 
significant effect needs to be interpreted along with an effect 
size to see if it is practically meaningful. We have also seen 
that our sample means, as a point estimate, are not perfect 
and would be better represented by a range of values that 
we call a confidence interval. As with all other topics, this is 
also true of our independent samples t-tests. Our effect size 
for the independent samples t-test is still Cohen’s d, and it is 
still just our observed effect divided by the standard deviation. 
Remember that standard deviation is just the square root of 
the variance, and because we work with pooled variance in our 
test statistic, we will use the square root of the pooled variance 
as our denominator in the formula for Cohen’s d. We also can 
still calculate r2, the percentage of variance accounted from by 
the independent variable/treatment effect. 

Effect size options                                                             
                                                                                                   
               Cohen’s d for independent t-test:                     
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                              Just like chapter 12, you also have r2 

as an option.                                                                           
                                                 

 where df is the df 
calculated in step 2. The r2 is interpreted as percent 
of variance in the dependent variable accounted 
from by the independent variable. Remember that 
r2 is calculated when you have an effect. 

For our example above, M1 = 24, M2 = 16.5, sp
2 = 144.48, we can 

calculate Cohen’s d to be: 
d 

=24-16.50/√(144.48)=7.5/
12.02 = 0.62 

We interpret this using the same guidelines as 
before, so we would consider this a moderate or 
moderately large effect. 
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For our example above, t = 2.48 (thus t2 = 2.48*2.48= 6.15), df 
= 62, we can calculate r2 to be: 

 r2 = 6.15/(6.15+62) = 6.15/
68.15 = 0.09 

We interpret this using the same guidelines as 
before, so 9% of the variance in mood (our DV) is 
from type of movie (our IV). 

Our confidence intervals also take on the same 
form and interpretation as they have in the past. The 
value we are interested in is the difference between 
the two means, so our point estimate is the value 
of one mean minus the other, or M1 – M2. Just like 
before, this is our observed effect and is the same 
value as the one we place in the numerator of our 
test statistic. We calculate this value then place the 
margin of error – still our critical value times our 
standard error – above and below it. 

Confidence Intervals                                                         
                                                                                                   
                     CI =   

where you would still calculate upper bound (UB) 
and lower bound (LB) values with t being the critical 
value t-value using a 2-tail test. 

Because our hypothesis testing example used a one-
tailed test, it would be inappropriate to calculate a 
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confidence interval on those data (remember that 
we can only calculate a confidence interval for a two-
tailed test because the interval extends in both 
directions). 

Example: Confidence Interval 

Let’s say we find summary statistics on the 
average life satisfaction of people from two 
different towns and want to create a 
confidence interval to see if the difference 
between the two might actually be zero. 

Our sample data are M1 = 28.65 s1 = 12.40 n1 

= 40 and M2 = 25.40, s2 = 15.68 n2 = 42. At face 
value, it looks like the people from the first 
town have higher life satisfaction (28.65 vs. 
25.40), but it will take a confidence interval (or 
complete hypothesis testing process) to see if 
that is true or just due to random chance. 

First, we want to calculate the difference 
between our sample means, which is 28.65 
–25.40 = 3.25. 

Next, we need a critical value from our 
t-table. If we want to test at the normal 95% 
level of confidence, then our sample sizes will 
yield degrees of freedom equal to 40 + 42 – 2 
= 80. From our table, that gives us a critical 
value of t* = 1.990. 

Finally, we need our standard error. Recall 
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that our standard error for an independent 
samples t-test uses pooled variance, which 
requires the Sum of Squares and degrees of 
freedom. Up to this point, we have calculated 
the Sum of Squares using raw data, but in this 
situation, we do not have access to it. So, what 
are we to do? 

If we have summary data like standard deviation and 
sample size, it is very easy to calculate the pooled 
variance using the other formula presented 

If s1 = 12.40, then s12 = 12.40*12.40 =  153.76, and if s2 = 
15.68, then s22 = 15.68*16.68 = 245.86. With n1 = 40 and n2 

= 42, we are all set to calculate the pooled variance. 

sp2 = [(40-1)(153.76) + (42-1)(245.86)]/(40+42-2) = 
[(39)(153.76) + (41)(245.86)]/80 = (5996.64 + 10080.36)/80 
=16077/80 = 200.96 

Plugging in sp2 = 200.96, n1 = 40, and n2 = 42nd, our 
standard error equals: 

All of these steps are just slightly different ways of 
using the same formulae, numbers, and ideas we have 
worked with up to this point. Once we get out standard 
error, it’s time to build our confidence interval. 
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Our confidence interval, as always, represents a 
range of values that would be considered reasonable or 
plausible based on our observed data. In this instance, 
our interval (-3.00, 9.50) does contain zero. Thus, even 
though the means look a little bit different, it may very 
well be the case that the life satisfaction in both of 
these towns is the same. Proving otherwise would 
require more data. 

Hypothesis testing and confidence intervals 

As mentioned when confidence intervals where 
introduced, there is a close relationship between 
confidence intervals and hypothesis tests. In 
particular, if the confidence interval does not 
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include the null hypothesis, then the associated 
statistical test would be statistically significant. 
However, things get trickier if we want to compare 
the means of two conditions (Schenker and 
Gentleman, 2001). There are a couple of situations 
that are clear. First, if each mean is contained within 
the confidence interval for the other mean, then 
there is definitely no significant difference at the 
chosen confidence level. Second, if there is no 
overlap between the confidence intervals, then 
there is certainly a significant difference at the 
chosen level; in fact, this test is substantially 
conservative, such that the actual error rate will be 
lower than the chosen level. But what about the 
case where the confidence intervals overlap one 
another but don’t contain the means for the other 
group? In this case the answer depends on the 
relative variability of the two variables, and there is 
no general answer. However, one should in general 
avoid using the “eyeball test” for overlapping 
confidence intervals. 

Homogeneity of Variance 

Before wrapping up the coverage of independent samples 
t-tests, there is one other important topic to cover. Using the 
pooled variance to calculate the test statistic relies on an 
assumption known as homogeneity of variance. In statistics, 
an assumption is some characteristic that we assume is true 
about our data, and our ability to use our inferential statistics 
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accurately and correctly relies on these assumptions being 
true. If these assumptions are not true, then our analyses are at 
best ineffective (e.g. low power to detect effects) and at worst 
inappropriate (e.g. too many Type I errors). A detailed coverage 
of assumptions is beyond the scope of this course, but it is 
important to know that they exist for all analyses. 
For the current analysis, one important assumption is 
homogeneity of variance. This is fancy statistical talk for the 
idea that the true population variance for each group is the 
same and any difference in the observed sample variances is 
due to random chance (if this sounds eerily similar to the idea 
of testing the null hypothesis that the true population means 
are equal, that’s because it is exactly the same!) This notion 
allows us to compute a single pooled variance that uses our 
easily calculated degrees of freedom. If the assumption is 
shown to not be true, then we have to use a very complicated 
formula to estimate the proper degrees of freedom. There are 
formal tests to assess whether or not this assumption is met, 
but we will not discuss them here. 
Many statistical programs incorporate the test of homogeneity 
of variance automatically and can report the results of the 
analysis assuming it is true or assuming it has been violated. 
You can easily tell which is which by the degrees of freedom: 
the corrected degrees of freedom (which is used when the 
assumption of homogeneity of variance is violated) will have 
decimal places. Fortunately, the independent samples t-test is 
very robust to violations of this assumption (an analysis is 
“robust” if it works well even when its assumptions are not 
met), which is why we do not bother going through the 
tedious work of testing and estimating new degrees of 
freedom by hand. 
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Review: Statistical Power 

There are three factors that can affect statistical 
power: 

• Sample size: Larger samples provide greater 
statistical power 

• Effect size: A given design will always have 
greater power to find a large effect than a 
small effect (because finding large effects is 
easier) 

• Type I error rate: There is a relationship 
between Type I error and power such that (all 
else being equal) decreasing Type I error will 
also decrease power. 

We can see this through simulation. First let’s 
simulate a single experiment, in which we compare 
the means of two groups using a standard t-test. We 
will vary the size of the effect (specified in terms of 
Cohen’s d), the Type I error rate, and the sample size, 
and for each of these we will examine how the 
proportion of significant results (i.e. power) is 
affected. Figure 1 shows an example of how power 
changes as a function of these factors. 
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Figure 1: Results from power simulation, showing 
power as a function of sample size, with effect sizes 
shown as different colors, and alpha shown as line 
type. The standard criterion of 80 percent power is 
shown by the dotted black line. 

This simulation shows us that even with a sample 
size of 96, we will have relatively little power to find a 
small effect (d=0.2d = 0.2) with α=0.005\alpha = 
0.005. This means that a study designed to do this 
would be futile – that is, it is almost guaranteed to 
find nothing even if a true effect of that size exists. 

There are at least two important reasons to care 
about statistical power. First, if you are a researcher, 
you probably don’t want to spend your time doing 
futile experiments. Running an underpowered study 
is essentially futile, because it means that there is a 
very low likelihood that one will find an effect, even 
if it exists. Second, it turns out that any positive 
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findings that come from an underpowered study 
are more likely to be false compared to a well-
powered study, a point we discuss in more detail in 
Chapter 19. Fortunately, there are tools available that 
allow us to determine the statistical power of an 
experiment. The most common use of these tools is 
in planning an experiment, when we would like to 
determine how large our sample needs to be in 
order to have sufficient power to find our effect of 
interest. 

Assumptions of independent t-test 

Assumptions are conditions that must be met in order for our 
hypothesis testing conclusion to be valid. [Important: If the 
assumptions are not met then our hypothesis testing 
conclusion is not likely to be valid. Testing errors can still occur 
even if the assumptions for the test are met.] 

Recall that inferential statistics allow us to make inferences 
(decisions, estimates, predictions) about a population based 
on data collected from a sample. Recall also that an inference 
about a population is true only if the sample studied is 
representative of the population. A statement about a 
population based on a biased sample is not likely to be true. 

Assumption 1: Individuals in the sample were selected 
randomly and independently, so the sample is highly likely to 
be representative of the larger population. 

• Random sampling ensures that each member of the 
population is equally likely to be selected. 

• An independent sample is one which the selection of one 
member has no effect on the selection of any other. 
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Assumption 2: The distribution of sample differences (DSD) is a 
normal, because we drew the samples from a population that 
was normally distributed. 

• This assumption is very important because we are 
estimating probabilities using the t- table – which provide 
accurate estimates of probabilities for events distributed 
normally. 

Assumption 3: Sampled populations have equal variances or 
have homogeneity of variance. 

 

Learning Objectives 

Having read this chapter, a student should be able to: 

• Identify under what study design to use an independent t-
test 

• Use the independent t-test to test hypotheses about 
mean differences between two populations or treatment 
conditions 

• Calculate and evaluate effect size options, Cohen’s d and r2 

Exercises – Ch. 13 

1. What is meant by “the difference of the means” when 
talking about an independent samples t-test? How does it 
differ from the “mean of the differences” in a repeated 
measures t-test? 

2. Describe three research questions that could be tested 
using an independent samples t-test. 
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3. Calculate pooled variance from the following raw data: 

Group 1 Group 2 
16 4 

11 10 

9 15 

7 13 

5 12 

4 9 

12 8 

4. Calculate the standard error from the following descriptive 
statistics 

1. s1 = 24, s2 = 21, n1 = 36, n2 = 49 
2. s1 = 15.40, s2 = 14.80, n1 = 20, n2 = 23 
3. s1 = 12, s2 = 10, n1 = 25, n2 = 25 

5. Determine whether to reject or fail to reject the null 
hypothesis in the following situations: 

1. t(40) = 2.49, α = 0.01, one-tailed test to the right 
2. X̅̅̅ = 64, ̅X̅̅̅ = 54, n1 = 14, n2 = 12, ⯑̅̅̅̅ ̅̅̅̅ = 9.75, α 

= 0.05, two-tailed test 
3. 95% Confidence Interval: (0.50, 2.10) 

6. A professor is interest in whether or not the type of software 
program used in a statistics lab affects how well students learn 
the material. The professor teaches the same lecture material 
to two classes but has one class use a point-and-click software 
program in lab and has the other class use a basic 
programming language. The professor tests for a difference 
between the two classes on their final exam scores. 
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Point-and-Click Programming 

83 86 

83 79 

63 100 

77 74 

86 70 

84 67 

78 83 

61 85 

65 74 

75 86 

100 87 

60 61 

90 76 

66 100 

54 

7. A researcher wants to know if there is a difference in how 
busy someone is based on whether that person identifies as 
an early bird or a night owl. The researcher gathers data from 
people in each group, coding the data so that higher scores 
represent higher levels of being busy, and tests for a difference 
between the two at the .05 level of significance. 

Chapter 13: Independent Samples  |  397



Early Bird Night Owl 

23 26 

28 10 

27 20 

33 19 

26 26 

30 18 

22 12 

25 25 

26 

8. Lots of people claim that having a pet helps lower their 
stress level. Use the following summary data to test the claim 
that there is a lower average stress level among pet owners 
(group 1) than among non-owners (group 2) at the .05 level of 
significance. M1 = 16.25, M2 = 20.95, s1 = 4.00, s2 = 5.10, n1 = 29, n2 

= 25 
9. Administrators at a university want to know if students in 

different majors are more or less extroverted than others. They 
provide you with descriptive statistics they have for English 
majors (coded as 1) and History majors (coded as 2) and ask you 
to create a confidence interval of the difference between them. 
Does this confidence interval suggest that the students from 
the majors differ? M1 = 3.78, M2= 2.23, s1 = 2.60, s2 = 1.15, n1 = 45, 
n2 = 40 

10. Researchers want to know if people’s awareness of 
environmental issues varies as a function of where they live. 
The researchers have the following summary data from two 
states, Alaska and Hawaii, that they want to use to test for a 
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difference. MH = 47.50, MA = 45.70, sH = 14.65, sA = 13.20, nH = 139, 
nA = 150 

Answers to Odd- Numbered Exercises – Ch. 
13 

1. The difference of the means is one mean, calculated from a 
set of scores, compared to another mean which is calculated 
from a different set of scores; the independent samples t-test 
looks for whether the two separate values are different from 
one another. This is different than the “mean of the differences” 
because the latter is a single mean computed on a single set 
of difference scores that come from one data collection of 
matched pairs. So, the difference of the means deals with two 
numbers but the mean of the differences is only one number. 
3. SS1 = 106.86, SS2 = 78.86, s2 = 15.48 
5. 1) Reject 2) Fail to Reject 3) Reject 
7. Step 1: H0: μ1 – μ2 = 0 “There is not difference in the average 
business of early birds versus night owls”, HA: μ1 – μ2 ≠ 0 “There 
is a difference in the average business of early birds versus 
night owls.” 
Step 2: Two-tailed test, df = 15, t* = 2.131. 
Step 3: M1 = 26.67, M2= 19.50, s2 = 27.73, sM1-M2=2.37, t = 3.03. 
Step 4: t > t*, Reject H0. Based on our data of early birds and 
night owls, we can conclude that early birds are busier (M1 = 
26.67) than night owls (M2 = 19.50), t(15) = 3.03, p < .05. Since the 
result is significant, we need an effect size: Cohen’s d = 1.47, 
which is a large effect. 

9. M1-M2 = 1.55, t* = 1.990, sM1-M2= 0.45, CI = (0.66, 2.44). This 
confidence interval does not contain zero, so it does suggest 
that there is a difference between the extroversion of English 
majors and History majors. 
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Raw scores from the mood and movies 
example 
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Group 1: Comedy Film 

X (X − ̅X) (X − ̅X)2 

39.10 15.10 228.01 

38.00 14.00 196.00 

14.90 -9.10 82.81 

20.70 -3.30 10.89 

19.50 -4.50 20.25 

32.20 8.20 67.24 

11.00 -13.00 169.00 

20.70 -3.30 10.89 

26.40 2.40 5.76 

35.70 11.70 136.89 

26.40 2.40 5.76 

28.80 4.80 23.04 

33.40 9.40 88.36 

13.70 -10.30 106.09 

46.10 22.10 488.41 

13.70 -10.30 106.09 

23.00 -1.00 1.00 

20.70 -3.30 10.89 

19.50 -4.50 20.25 

11.40 -12.60 158.76 
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24.10 0.10 0.01 

17.20 -6.80 46.24 

38.00 14.00 196.00 

10.30 -13.70 187.69 

35.70 11.70 136.89 

41.50 17.50 306.25 

18.40 -5.60 31.36 

36.80 12.80 163.84 

54.10 30.10 906.01 

11.40 -12.60 158.76 

8.70 -15.30 234.09 

23.00 -1.00 1.00 

14.30 -9.70 94.09 

5.30 -18.70 349.69 

6.30 -17.70 313.29 

Σ = 840 Σ = 0 Σ=5061.60 
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Group 2: Horror Film 

X (X − ̅X) (X − ̅X)2 

24.00 7.50 56.25 

17.00 0.50 0.25 

35.80 19.30 372.49 

18.00 1.50 2.25 

-1.70 -18.20 331.24 

11.10 -5.40 29.16 

10.10 -6.40 40.96 

16.10 -0.40 0.16 

-0.70 -17.20 295.84 

14.10 -2.40 5.76 

25.90 9.40 88.36 

23.00 6.50 42.25 

20.00 3.50 12.25 

14.10 -2.40 5.76 

-1.70 -18.20 331.24 

19.00 2.50 6.25 

20.00 3.50 12.25 

30.90 14.40 207.36 

30.90 14.40 207.36 

22.00 5.50 30.25 

6.20 -10.30 106.09 

27.90 11.40 129.96 

14.10 -2.40 5.76 

33.80 17.30 299.29 
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26.90 10.40 108.16 

5.20 -11.30 127.69 

13.10 -3.40 11.56 

19.00 2.50 6.25 

-15.50 -32.00 1024.00 

Σ = 478.6 Σ = 0.10 Σ=3896.45 

Table 1. Raw scores and Sum of Squares for Group 1 
Table 2. Raw scores and Sum of Squares for Group 2. 

404  |  Chapter 13: Independent Samples



14.  Chapter 14: Analysis 
of Variance 

Additional Hypothesis Tests 

In unit 1, we learned the basics of statistics – what 
they are, how they work, and the mathematical 
and conceptual principles that guide them. In unit 
2, we put applied these principles to the process 
and ideas of hypothesis testing – how we take 
observed sample data and use it to make 
inferences about our populations of interest – 
using one continuous variable and one categorical 
variable. We will now continue to use this same 
hypothesis testing logic and procedure on new 
types of data. We will focus on group mean 
differences on more than two groups, using 
Analysis of Variance. 

Analysis of variance, often abbreviated to ANOVA 
for short, serves the same purpose as the t-tests we 
learned earlier in unit 2: it tests for differences in 
group means. ANOVA is more flexible in that it can 
handle any number of groups, unlike t-tests which 
are limited to two groups (independent samples) or 
two time points (paired samples). Thus, the purpose 
and interpretation of ANOVA will be the same as it 
was for t-tests, as will the hypothesis testing 
procedure. However, ANOVA will, at first glance, look 
much different from a mathematical perspective, 
though as we will see, the basic logic behind the test 
statistic for ANOVA is actually the same. 
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ANOVA basics 

An Analysis of Variance (ANOVA) is an inferential statistical tool 
that we use to find statistically significant differences among 
the means of two or more populations. 

We calculate variance but the goal is still to compare 
population mean differences. The test statistic for the ANOVA is 
called F. It is a ratio of two estimates of the population variance 
based on the sample data. 

Experiments are designed to determine if there is a cause 
and effect relationship between two variables. In the language 
of the ANOVA, the factor is the variable hypothesized to cause 
some change (effect) in the response variable (dependent 
variable). 

An ANOVA conducted on a design in which there is only 
one factor is called a one-way ANOVA. If an experiment has 
two factors, then the ANOVA is called a two-way ANOVA. For 
example, suppose an experiment on the effects of age and 
gender on reading speed were conducted using three age 
groups (8 years, 10 years, and 12 years) and the two genders 
(male and female). The factors would be age and gender. Age 
would have three levels and gender would have two levels. 
ANOVAs can also be used for within-group/repeated and 
between subjects designs.  For this chapter we will focus on 
between subject one-way ANOVA. 

In a One-Way ANOVA we compare two types of variance: 
the variance between groups and the variance within groups, 
which we will discuss in the next section. 

Observing and Interpreting Variability 

We have seen time and again that scores, be they individual 
data or group means, will differ naturally. Sometimes this is 
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due to random chance, and other times it is due to actual 
differences. Our job as scientists, researchers, and data analysts 
is to determine if the observed differences are systematic and 
meaningful (via a hypothesis test) and, if so, what is causing 
those differences. Through this, it becomes clear that, although 
we are usually interested in the mean or average score, it is the 
variability in the scores that is key. 

Take a look at figure 1, which shows scores for many people on a 
test of skill used as part of a job application. The x-axis has each 
individual person, in no particular order, and the y-axis contains 
the score each person received on the test. As we can see, the 
job applicants differed quite a bit in their performance, and 
understanding why that is the case would be extremely useful 
information. However, there’s no interpretable pattern in the 
data, especially because we only have information on the test, 
not on any other variable (remember that the x-axis here only 
shows individual people and is not ordered or interpretable). 

Figure 1. Scores on a job test 

Our goal is to explain this variability that we are seeing in the 
dataset. Let’s assume that as part of the job application 
procedure we also collected data on the highest degree each 
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applicant earned. With knowledge of what the job requires, we 
could sort our applicants into three groups: those applicants 
who have a college degree related to the job, those applicants 
who have a college degree that is not related to the job, and 
those applicants who did not earn a college degree. This is a 
common way that job applicants are sorted, and we can use 
ANOVA to test if these groups are actually different. Figure 2 
presents the same job applicant scores, but now they are color 
coded by group membership (i.e. which group they belong in). 
Now that we can differentiate between applicants this way, 
a pattern starts to emerge: those applicants with a relevant 
degree (coded red) tend to be near the top, those applicants 
with no college degree (coded black) tend to be near the 
bottom, and the applicants with an unrelated degree (coded 
green) tend to fall into the middle. However, even within these 
groups, there is still some variability, as shown in Figure 2. 

Figure 2. Applicant scores coded by degree earned 
This pattern is even easier to see when the 

applicants are sorted and organized into their 
respective groups, as shown in Figure 3. 
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Figure 3. Applicant scores by group 
Now that we have our data visualized into an easily 

interpretable format, we can clearly see that our applicants’ 
scores differ largely along group lines. Those applicants who 
do not have a college degree received the lowest scores, those 
who had a degree relevant to the job received the highest 
scores, and those who did have a degree but one that is not 
related to the job tended to fall somewhere in the middle. Thus, 
we have systematic variance between our groups. 
We can also clearly see that within each group, our applicants’ 
scores differed from one another. Those applicants without a 
degree tended to score very similarly, since the scores are 
clustered close together. Our group of applicants with relevant 
degrees varied a little but more than that, and our group of 
applicants with unrelated degrees varied quite a bit. It may be 
that there are other factors that cause the observed score 
differences within each group, or they could just be due to 
random chance. Because we do not have any other 
explanatory data in our dataset, the variability we observe 
within our groups is considered random error, with any 
deviations between a person and that person’s group mean 
caused only by chance. Thus, we have unsystematic (random) 
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variance within our groups. 

The process and analyses used in ANOVA will take these two 
sources of variance (systematic variance between groups and 
random error within groups, or how much groups differ from 
each other and how much people differ within each group) and 
compare them to one another to determine if the groups have 
any explanatory value in our outcome variable. By doing this, 
we will test for statistically significant differences between the 
group means, just like we did for t– tests. We will go step by 
step to break down the math to see how ANOVA actually works. 

ANOVA (analysis of variance) breaks down to:         
                                                                                                   
                                                             

where F is the new statistic reported for ANOVAs 

Sources of Variance 

ANOVA is all about looking at the different sources of variance 
(i.e. the reasons that scores differ from one another) in a 
dataset. Fortunately, the way we calculate these sources of 
variance takes a very familiar form: the Sum of Squares. Before 
we get into the calculations themselves, we must first lay out 
some important terminology and notation. 

In ANOVA, we are working with two variables, a grouping or 
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explanatory variable and a continuous outcome variable. The 
grouping variable is our predictor (it predicts or explains the 
values in the outcome variable) or, in experimental terms, our 
independent variable, and it made up of k groups, with k being 
any whole number 2 or greater. That is, ANOVA requires two or 
more groups to work, and it is usually conducted with three or 
more. In ANOVA, we refer to groups as “levels”, so the number 
of levels is just the number of groups, which again is k. In the 
above example, our grouping variable was education, which 
had 3 levels, so k= 3. When we report any descriptive value (e.g. 
mean, sample size, standard deviation) for a specific group, 
we will use a subscript 1…k to denote which group it refers to. 
For example, if we have three groups and want to report the 
standard deviation s for each group, we would report them as 
s1, s2, and s3. 

Our second variable is our outcome variable. This is the variable 
on which people differ, and we are trying to explain or account 
for those differences based on group membership. In the 
example above, our outcome was the score each person 
earned on the test. Our outcome variable will still use X for 
scores as before. When describing the outcome variable using 
means, we will use subscripts to refer to specific group means. 
So if we have k = 3 groups, our means will be ̅X̅1̅, ̅X̅2̅, 
and ̅X̅3̅. We will also have a single mean representing the 
average of all participants across all groups. This is known as 
the grand mean, and we use the symbol X̅G. These different 
means – the individual group means and the overall grand 
mean –will be how we calculate our sums of squares. 

Finally, we now have to differentiate between several 
different sample sizes. Our data will now have sample sizes for 
each group, and we will denote these with a lower case “n” and 
a subscript, just like with our other descriptive statistics: n1, n2, 
and n3. We also have the overall sample size in our dataset, and 
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we will denote this with a capital N. The total sample size (N) is 
just the group sample sizes added together. 

Between Groups Sum of Squares 

One source of variability we can identified in Figure 
3 of the above example was differences or variability 
between the groups. That is, the groups clearly had 
different average levels. The variability arising from 
these differences is known as the between groups 
variability, and it is quantified using Between 
Groups Sum of Squares. 

Our calculations for sums of squares in ANOVA 
will take on the same form as it did for regular 
calculations of variance. Each observation, in this 
case the group means, is compared to the overall 
mean, in this case the grand mean, to calculate a 
deviation score. These deviation scores are squared 
so that they do not cancel each other out and sum 
to zero. The squared deviations are then added up, 
or summed. There is, however, one small difference. 
Because each group mean represents a group 
composed of multiple people, before we sum the 
deviation scores we must multiple them by the 
number of people within that group. Incorporating 
this, we find our equation for Between Groups Sum 
of Squares. 

Between Groups Sum of Squares                             
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                                                                      The subscript 
j refers to the “jth” group where j = 1…k to keep track 
of which group mean and sample size we are 
working with. As you can see, the only difference 
between this equation and the familiar sum of 
squares for variance is that we are adding in the 
sample size. Everything else logically fits together in 
the same way. 

Within Groups Sum of Squares 

The other source of variability in the figures comes from 
differences that occur within each group. That is, each 
individual deviates a little bit from their respective group mean, 
just like the group means differed from the grand mean. We 
therefore label this source the Within Groups Sum of Squares. 
Because we are trying to account for variance based on group-
level means, any deviation from the group means indicates 
an inaccuracy or error. Thus, our within groups variability 
represents our error in ANOVA. 
The formula for this sum of squares is again going to take on 
the same form and logic. What we are looking for is the 
distance between each individual person and the mean of the 
group to which they belong. We calculate this deviation score, 
square it so that they can be added together, then sum all of 
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them into one overall value. 

Sum of Squares within-group                                     
                                                                                                   
                                                             

In this instance, because we are calculating this 
deviation score for each individual person, there is 
no need to multiple by how many people we have. 
The subscript j again represents a group and the 
subscript i refers to a specific person. So, Xij is read 
as “the ith person of the jth group.” It is important to 
remember that the deviation score for each person 
is only calculated relative to their group mean: do 
not calculate these scores relative to the other 
group means. 

 

Total Sum of Squares 
The Between Groups and Within Groups Sums of Squares 
represent all variability in our dataset. We also refer to the total 
variability as the Total Sum of Squares, representing the overall 
variability with a single number. The calculation for this score 
is exactly the same as it would be if we were calculating the 
overall variance in the dataset (because that’s what we are 
interested in explaining) without worrying about or even 
knowing about the groups into which our scores fall: 
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Total Sum of Squares                                                   
                                                                                               
                                                         

We can see that our Total Sum of 
Squares is just each individual score 
minus the grand mean. As with our 
Within Groups Sum of Squares, we are 
calculating a deviation score for each 
individual person, so we do not need to 
multiply anything by the sample size; 
that is only done for Between Groups 
Sum of Squares. 

An important feature of the sums of 
squares in ANOVA is that they all fit 
together. We could work through the 
algebra to demonstrate that if we added 
together the formulas for SSB and SSW, we 
would end up with the formula for SST. 
That is:               

This will prove to be very convenient, because if 
we know the values of any two of our sums of 
squares, it is very quick and easy to find the value of 
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the third. It is also a good way to check calculations: 
if you calculate each SS by hand, you can make sure 
that they all fit together as shown above, and if not, 
you know that you made a math mistake 
somewhere. 

We can see from the above formulas that calculating an 
ANOVA by hand from raw data can take a very, very long time. 
For this reason, you will not be required to calculate the SS 
values by hand, but you should still take the time to understand 
how they fit together and what each one represents to ensure 
you understand the analysis itself. 

ANOVA Table 

All of our sources of variability fit together in 
meaningful, interpretable ways as we saw above, 
and the easiest way to do this is to organize them 
into a table. The ANOVA table, shown in Table 1, is 
how we calculate our test statistic. 
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Source SS df MS 

Between SSB k-1 

Within SSW N-k 

Total SST N-1   (MS is varian

Table 1. ANOVA table. 

The first column of the ANOVA table, labeled 
“Source”, indicates which of our sources of variability 
we are using: between groups, within groups, or 
total. The second column, labeled “SS”, contains our 
values for the sums of squares that we learned to 
calculate above. As noted previously, calculating 
these by hand takes too long, and so the formulas 
are not presented in Table 1. However, remember 
that the Total is the sum of the other two, in case 
you are only given two SS values and need to 
calculate the third. 

The next column in Table 1, labeled “df”, is our 
degrees of freedom. As with the sums of squares, 
there is a different df for each group, and the 
formulas are presented in the table. Notice that the 
total degrees of freedom, N – 1, is the same as it was 
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for our regular variance. This matches the SST 

formulation to again indicate that we are simply 
taking our familiar variance term and breaking it up 
into difference sources. Also remember that the 
capital N in the df calculations refers to the overall 
sample size, not a specific group sample size. Notice 
that the total row for degrees of freedom, just like 
for sums of squares, is just the Between and Within 
rows added together. If you take N – k + k – 1, then 
the “– k” and “+ k” portions will cancel out, and you 
are left with N – 1. This is a convenient way to quickly 
check your calculations. 

The third column, labeled “MS”, is our 
Mean Squares for each source of variance. 
A “mean square” is just another way to say 
variability. Each mean square is calculated 
by dividing the sum of squares by its 
corresponding degrees of freedom. 
Notice that we do this for the Between 
row and the Within row, but not for the 
Total row. There are two reasons for this. 
First, our Total Mean Square would just be 
the variance in the full dataset (put 
together the formulas to see this for 
yourself), so it would not be new 
information. Second, the Mean Square 
values for Between and Within would not 
add up to equal the Mean Square Total 
because they are divided by different 
denominators. This is in contrast to the 
first two columns, where the Total row 
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was both the conceptual total (i.e. the 
overall variance and degrees of freedom) 
and the literal total of the other two rows. 

The final column in the ANOVA table 
(Table 1), labeled “F”, is our test statistic for 
ANOVA. The F statistic, just like a t– or 
z-statistic, is compared to a critical value to 
see whether we can reject for fail to reject 
a null hypothesis. Thus, although the 
calculations look different for ANOVA, we 
are still doing the same thing that we did 
in all of Unit 2. We are simply using a new 
type of data to test our hypotheses. We 
will see what these hypotheses look like 
shortly, but first, we must take a moment 
to address why we are doing our 
calculations this way. 

ANOVA 

We will typically work from having Sum of 
Squares calculated, but here are the basic formulas 
for the 3 types of Sum of Squares for the ANOVA: 
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1. Total sum of squares (SST): ∑x2 – (∑x)2/n 
2. Within sum of squares (SSW): add up the 

sum of squares for each treatment condition 
3. Between sum of squares (SSB): SST – SSW = 

SSB 

While there are other ways to calculate the SSs, 
these are the formulas we can use for this class if 
needed.                                                             

ANOVA and Type I Error 

You may be wondering why we do not just use another t-test 
to test our hypotheses about three or more groups the way 
we did in Unit 2. After all, we are still just looking at group 
mean differences. The reason is that our t-statistic formula can 
only handle up to two groups, one minus the other. With only 
two groups, we can move our population parameters for the 
group means around in our null hypothesis and still get the 
same interpretation: the means are equal, which can also be 
concluded if one mean minus the other mean is equal to zero. 
However, if we tried adding a third mean, we would no longer 
be able to do this. So, in order to use t– tests to compare three 
or more means, we would have to run a series of individual 
group comparisons. 

For only three groups, we would have three t-tests: group 1 vs 
group 2, group 1 vs group 3, and group 2 vs group 3. This may 
not sound like a lot, especially with the advances in technology 
that have made running an analysis very fast, but it quickly 
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scales up. With just one additional group, bringing our total 
to four, we would have six comparisons: group 1 vs group 2, 
group 1 vs group 3, group 1 vs group 4, group 2 vs group 3, 
group 2 vs group 4, and group 3 vs group 4. This makes for a 
logistical and computation nightmare for five or more groups. 
When we reject the null hypothesis in a one-way ANOVA, we 
conclude that the group means are not all the same in the 
population. But this can indicate different things. With three 
groups, it can indicate that all three means are significantly 
different from each other. Or it can indicate that one of the 
means is significantly different from the other two, but the 
other two are not significantly different from each other. For 
this reason, statistically significant one-way ANOVA results are 
typically followed up with a series of post hoc comparisons of 
selected pairs of group means to determine which are different 
from which others. 

A bigger issue, however, is our probability of committing a 
Type I Error. Remember that a Type I error is a false positive, 
and the chance of committing a Type I error is equal to our 
significance level, α. This is true if we are only running a single 
analysis (such as a t-test with only two groups) on a single 
dataset. 

However, when we start running multiple analyses on the 
same dataset, our Type I error rate increases, raising the 
probability that we are capitalizing on random chance and 
rejecting a null hypothesis when we should not. ANOVA, by 
comparing all groups simultaneously with a single analysis, 
averts this issue and keeps our error rate at the α we set. 

Hypotheses in ANOVA 

So far we have seen what ANOVA is used for, why we use it, and 
how we use it. Now we can turn to the formal hypotheses we 
will be testing. As with before, we have a null and an alternative 
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hypothesis to lay out. Our null hypothesis is still the idea of 
“no difference” in our data. Because we have multiple group 
means, we simply list them out as equal to each other: 

H0: There is 
no difference 
in the group 
means.  H0: 
µ1 = µ2 = µ3 

We list as many μ parameters as groups we have. 
In the example above, we have three groups to test 
(k = 3), so we have three parameters in our null 
hypothesis. If we had more groups, say, four, we 
would simply add another μ to the list and give it the 
appropriate subscript, giving us: H0: µ1 = µ2 = µ3 = 
µ4. Notice that we do not say that the means are all 
equal to zero, we only say that they are equal to one 
another; it does not matter what the actual value is, 
so long as it holds for all groups equally. 

Our alternative hypothesis for ANOVA is a little bit 
different. Let’s take a look at it and then dive deeper 
into what it means: 

HA: At least 1 mean is different 
The first difference in obvious: there is no 

mathematical statement of the alternative 
hypothesis in ANOVA. This is due to the second 
difference: we are not saying which group is going to 
be different, only that at least one will be. Because 
we do not hypothesize about which mean will be 
different, there is no way to write it mathematically. 
Related to this, we do not have directional 
hypotheses (greater than or less than) like we did 
with the z-statistic and t- statistics. Due to this, our 
alternative hypothesis is always exactly the same: at 
least one mean is different. 

With t-tests, we saw that, if we reject the null 
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hypothesis, we can adopt the alternative, and this 
made it easy to understand what the differences 
looked like. In ANOVA, we will still adopt the 
alternative hypothesis as the best explanation of our 
data if we reject the null hypothesis. However, when 
we look at the alternative hypothesis, we can see 
that it does not give us much information. We will 
know that a difference exists somewhere, but we will 
not know where that difference is. The ANOVA is 
an ominous test meaning you just know there are 
differences.  More specifically, at least 1 group is 
different from the rest.  Is only group 1 different but 
groups 2 and 3 the same? Is it only group 2? Are all 
three of them different? Based on just our alternative 
hypothesis, there is no way to be sure. We will come 
back to this issue later and see how to find out 
specific differences. For now, just remember that we 
are testing for any difference in group means, and it 
does not matter where that difference occurs. Now 
that we have our hypotheses for ANOVA, let’s work 
through an example. We will continue to use the 
data from Figures 1 through 3 for continuity. 

Example: Scores on Job Application Tests 

Our data come from three groups of 10 people each, 
all of whom applied for a single job opening: those with 
no college degree, those with a college degree that is 
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not related to the job opening, and those with a college 
degree from a relevant field. We want to know if we 
can use this group membership to account for our 
observed variability and, by doing so, test if there is a 
difference between our three group means (k = 3). We 
will follow the same steps for hypothesis testing as we 
did in previous chapters.  Let’s start, as always, with our 
hypotheses. 

Step 1: State the Hypotheses 

Our hypotheses are concerned with the 
means of groups based on education level, 
so: 

H0: There is no difference between 
educational levels. H0: µ1 = µ2 = µ3 

HA: At least 1 educational level is different. 

Again, we phrase our null hypothesis in 
terms of what we are actually looking for, and 
we use a number of population parameters 
equal to our number of groups. Our 
alternative hypothesis is always exactly the 
same. 

Step 2: Find the Critical Value 

Our test statistic for ANOVA, as we saw 
above, is F. Because we are using a new test 
statistic, we will get a new table: the F
distribution table, the top of which is shown 
in Figure 4: 
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Figure 4. F distribution table. 

The F table only displays critical values for α 
= 0.05. This is because other significance 
levels are uncommon and so it is not worth it 
to use up the space to present them. There 
are now two degrees of freedom we must use 
to find our critical value: Numerator and 
Denominator. These correspond to the 
numerator and denominator of our test 
statistic, which, if you look at the ANOVA table 
presented earlier, are our Between Groups 
and Within Groups rows, respectively. The dfB 
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is the “Degrees of Freedom: Numerator” 
because it is the degrees of freedom value 
used to calculate the Mean Square Between, 
which in turn was the numerator of our F
statistic. Likewise, the dfW is the “df denom.” 
(short for denominator) because it is the 
degrees of freedom value used to calculate 
the Mean Square Within, which was our 
denominator for F. 

The formula for dfB is k – 1, and remember 
that k is the number of groups we are 
assessing. In this example, k = 3 so our dfB = 2. 
This tells us that we will use the second 
column, the one labeled 2, to find our critical 
value. To find the proper row, we simply 
calculate the dfW, which was N – k. The 
original prompt told us that we have “three 
groups of 10 people each,” so our total sample 
size is 30. This makes our value for dfW = 27. If 
we follow the second column down to the 
row for 27, we find that our critical value is 
3.35. We use this critical value the same way 
as we did before: it is our criterion against 
which we will compare our obtained test 
statistic to determine statistical significance. 

Step 3: Calculate the Test Statistic 

Now that we have our hypotheses and the 
criterion we will use to test them, we can 
calculate our test statistic. To do this, we will 
fill in the ANOVA table. When we do so, we 
will work our way from left to right, filling in 
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each cell to get our final answer. Here will be 
are basic steps for calculating ANOVA: 

1. 3 Sum of Square calculations 
2. 3 degrees of freedom calculations 
3. 2 variance calculations 
4. 1 F – score 

We will assume that we are given the SS values as 
shown below: 

Source SS d
f 

M
S F 

Betwee
n 

824
6 

Within 302
0 

Total 

These may seem like random numbers, but 
remember that they are based on the distances 
between the groups themselves and within each 
group. Figure 5 shows the plot of the data with the 
group means and grand mean included. If we wanted 
to, we could use this information, combined with our 
earlier information that each group has 10 people, to 
calculate the Between Groups Sum of Squares by hand. 

However, doing so would take some time, and 
without the specific values of the data points, we 
would not be able to calculate our Within Groups Sum 
of Squares, so we will trust that these values are the 
correct ones. 
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Figure 5. Means 

We were given the sums of squares 
values for our first two rows, so we can use 
those to calculate the Total Sum of Squares. 

Source SS d
f 

M
S F 

Betwee
n 

824
6 

Within 302
0 

Total 8246+3020=112
66 

We also calculated our degrees of freedom earlier, so 
we can fill in those values. Additionally, we know that 
the total degrees of freedom is N – 1, which is 29. This 
value of 29 is also the sum of the other two degrees of 
freedom, so everything checks out. 
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Source SS df M
S F 

Between 8246 3-1=
2 

Within 3020 29-2=
27 

Total 11266 30-1=
29 

Now we have everything we need to 
calculate our mean squares. Our MS values 
for each row are just the SS divided by the 
df for that row, giving us: 

Source SS df MS 

Between 8246 2 8246/2 =   4

Within 3020 27 3020/27 =111.

Total 11266 29 

Remember that we do not calculate a 
Total Mean Square, so we leave that cell 
blank. Finally, we have the information we 
need to calculate our test statistic. F is our 
MSB divided by MSW. 
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Source SS d
f MS F 

Betwe
en 

82
46 2 412

3 
36.

86 

Within 30
20 

2
7 

111.
85 

Total 112
66 

2
9 

Remember that we do not calculate a 
Total Mean Square, so we leave that cell 
blank. Finally, we have the information we 
need to calculate our test statistic. F is our 
MSB divided by MSW. 

So, working our way through the table 
given only two SS values and the sample 
size and group size given before, we 
calculate our test statistic to be Fobt = 
36.86, which we will compare to the critical 
value in step 4. 

Step 4: Make a decision 

Our obtained test statistic was 
calculated to be Fobt = 36.86 and our 
critical value was found to be F* = 3.35. Our 
obtained statistic is larger than our critical 
value, so we can reject the null hypothesis. 

Reject H0. Based on our 3 groups of 10 
people, we can conclude that job test 
scores are statistically significantly 
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different based on education level, F(2,27) 
= 36.86, p < .05. 

Notice that when we report F, we include 
both degrees of freedom. We always report 
the numerator then the denominator, 
separated by a comma. We must also note 
that, because we were only testing for any 
difference, we cannot yet conclude which 
groups are different from the others. We will 
do so shortly, but first, because we found a 
statistically significant result, we need to 
calculate an effect size to see how big of an 
effect we found. 

Effect Size: Variance Explained 

Recall that the purpose of ANOVA is to take observed variability 
and see if we can explain those differences based on group 
membership. To that end, our effect size will be just that: the 
variance explained. You can think of variance explained as the 
proportion or percent of the differences we are able to account 
for based on our groups. We know that the overall observed 
differences are quantified as the Total Sum of Squares, and 
that our observed effect of group membership is the Between 
Groups Sum of Squares. Our effect size, therefore, is the ratio of 
these to sums of squares. 

Effect size, ⯑2 (eta-square)  also known as R2           
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                                                              The effect size ⯑2 or 
R2 is called “eta-squared” and represents variance 
explained.                                                                               

   or stated as   

Eta-square is reported as percentage 
of variance of the outcome/dependent 
variable explained by the predictor/
independent variable. 

Although you report variance 
explained by the predictor/independent 
variable, you can also use the ⯑2 
guidelines for effect size: 
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⯑2 Siz

0.01 Small 

0.09 Medium 

0.25 L

Note: if less than .01, no effect is reported 

Example continued adding on effect size for scores on job 
application tests 

For our example, SSB =8246 and SST = 
11266, our values give an effect size, ⯑2, of: 

So, we are able to explain 73% of the variance in job 
test scores based on education. This is, in fact, a huge 
effect size, and most of the time we will not explain 
nearly that much variance. 

So, we found that not only do we have a statistically significant 
result, but that our observed effect was very large! However, 
we still do not know specifically which groups are different 
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from each other. It could be that they are all different, or that 
only those who have a relevant degree are different from the 
others, or that only those who have no degree are different 
from the others. To find out which is true, we need to do a 
special analysis called a post hoc test. 

Post Hoc Tests 

A post hoc test is used only after we find a statistically 
significant result and need to determine where our differences 
truly came from. The term “post hoc” comes from the Latin for 
“after the event”. There are many different post hoc tests that 
have been developed, and most of them will give us similar 
answers. 
Post hoc testing is NOT running a series of independent-
samples t tests comparing each group mean to each of the 
other group means. As discussed earlier, if we conduct several 
t- tests when the null hypothesis is true, the chance of 
mistakenly rejecting at least one null hypothesis increases 
with each test we conduct. This is a similar issue as explained 
with ANOVA and Type I Error. This referred to experiment-wise 
error. Instead we have a few options to determine significant 
differences between the groups. We will only focus here on 
the most commonly used ones. Further we will only discuss 
the concepts behind each and will not worry about 
calculations. (Note: these all would be run in statistical analysis 
software — and so would the ANOVA!) 

Bonferroni Test 

A Bonferroni test is perhaps the simplest post hoc analysis. A 
Bonferroni test is a series of t-tests performed on each pair of 
groups. As we discussed earlier, the number of groups quickly 
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grows the number of comparisons, which inflates Type I error 
rates. To avoid this, a Bonferroni test divides our significance 
level α by the number of comparisons we are making so that 
when they are all run, they sum back up to our original Type I 
error rate. Once we have our new significance level, we simply 
run independent samples t-tests to look for difference between 
our pairs of groups. This adjustment is sometimes called a 
Bonferroni Correction, and it is easy to do by hand if we want to 
compare obtained p-values to our new corrected α level, but it 
is more difficult to do when using critical values like we do for 
our analyses so we will leave our discussion of it to that. 

Tukey’s Honest Significant Difference 

Tukey’s Honest Significant Difference (HSD) is a very popular 
post hoc analysis. This analysis, like Bonferroni’s, makes 
adjustments based on the number of comparisons, but it 
makes adjustments to the test statistic when running the 
comparisons of two groups. These comparisons give us an 
estimate of the difference between the groups and a 
confidence interval for the estimate. We use this confidence 
interval in the same way that we use a confidence interval for 
a regular independent samples t-test: if it contains 0.00, the 
groups are not different, but if it does not contain 0.00 then the 
groups are different. 

Example continued adding on post hoc for scores on job 
application tests: Tukey 
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Remember we are comparing scores from those 
whom applied for a single job opening: those with no 
college degree (none), those with a college degree that 
is not related to the job opening (unrelated), and those 
with a college degree from a relevant field (relevant). 

Tukey 

Below are the differences between the group means 
and the Tukey’s HSD confidence intervals for the 
differences: 

Comparison Differenc
e 

Tukey’s HSD 
CI 

None vs Relevant 40.60 (28.87, 52.33) 

None vs Unrelated 19.50 (7.77, 31.23) 

Relevant vs 
Unrelated 21.10 (9.37, 32.83) 

As we can see, none of these intervals contain 0.00, 
so we can conclude that all three groups are different 
from one another. 

Scheffe’s Test 

Another common post hoc test is Scheffe’s Test. Like Tukey’s 
HSD, Scheffe’s test adjusts the test statistic for how many 
comparisons are made, but it does so in a slightly different way. 
The result is a test that is “conservative,” which means that it 
is less likely to commit a Type I Error, but this comes at the 
cost of less power to detect effects. We can see this by looking 
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at the confidence intervals that Scheffe’s test gives us for our 
example. 

Example continued adding on post hoc for scores on job 
application tests: Scheffe 

Scheffe 

Below are the differences between the group means 
and the Sheffe confidence intervals for the differences: 

Comparison Differenc
e Scheffe’s CI 

None vs Relevant 40.60 (28.35, 
52.85) 

None vs Unrelated 19.50 (7.25, 31.75) 

Relevant vs 
Unrelated 21.10 (8.85, 33.35) 

As we can see, these are slightly wider than the 
intervals we got from Tukey’s HSD. This means that, all 
other things being equal, they are more likely to 
contain zero. In our case, however, the results are the 
same, and we again conclude that all three groups 
differ from one another. 

There are many more post hoc tests than just these 
three, and they all approach the task in different 
ways, with some being more conservative and 
others being more powerful. In general, though, 

Chapter 14: Analysis of Variance  |  437



they will give highly similar answers. What is 
important here is to be able to interpret a post hoc 
analysis. If you are given post hoc analysis 
confidence intervals, like the ones seen above, read 
them the same way we read confidence intervals 
previously comparing two groups: if they contain 
zero, there is no difference; if they do not contain 
zero, there is a difference. 

Other ANOVA Designs 

We have only just scratched the surface on ANOVA 
in this chapter. There are many other variations 
available for the one-way ANOVA presented here. 
There are also other types of ANOVAs that you are 
likely to encounter. The first is called a factorial 
ANOVA. Factorial ANOVAs use multiple grouping 
variables, not just one, to look for group mean 
differences. Just as there is no limit to the number of 
groups in a one-way ANOVA, there is no limit to the 
number of grouping variables in a Factorial ANOVA, 
but it becomes very difficult to find and interpret 
significant results with many factors, so usually they 
are limited to two or three grouping variables with 
only a small number of groups in each. Another 
ANOVA is called a Repeated Measures ANOVA. This 
is an extension of a repeated measures or matched 
pairs t-test, but in this case we are measuring each 
person three or more times to look for a change. We 
can even combine both of these advanced ANOVAs 
into mixed designs to test very specific and valuable 
questions. These topics are far beyond the scope of 
this text, but you should know about their existence. 
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Our treatment of ANOVA here is a small first step into 
a much larger world! 

Learning Objectives 

Having read the chapter, students should be able to: 

• understand the basic purpose for analysis of variance 
(ANOVA) and the general logic that underlies the 
statistical procedure 

• perform an ANOVA to evaluate data from a single factor, 
between subjects research design 

• understand when post hoc tests are necessary and 
purpose that they serve 

• calculate and interpret effect size 

Exercises – Ch. 14 

1. What are the three pieces of variance analyzed in ANOVA? 
2. What does rejecting the null hypothesis in ANOVA tell us? 

What does it not tell us? 
3. What is the purpose of post hoc tests? 
4. Based on the ANOVA table below, do you reject or fail to 

reject the null hypothesis? What is the effect size? 

Source SS df MS F 

Between 60.72 3 20.24 3.88 

Within 213.61 41 5.21 

Total 274.33 44 

5. Finish filling out the following ANOVA tables: 
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Problem 1: N = 14 

Source SS df MS F 

Between 2 14.10 

Within 

Total 64.65 

Problem 2: 

Source SS df MS F 

Between 2 42.36 

Within 54 2.48 

Total 

6. You know that stores tend to charge different prices for 
similar or identical products, and you want to test whether or 
not these differences are, on average, statistically significantly 
different. You go online and collect data from 3 different stores, 
gathering information on 15 products at each store. You find 
that the average prices at each store are: Store 1 M = $27.82, 
Store 2 M= $38.96, and Store 3 M = $24.53. Based on the overall 
variability in the products and the variability within each store, 
you find the following values for the Sums of Squares: SST = 
683.22, SSW = 441.19. Complete the ANOVA table and use the 4 
step hypothesis testing procedure to see if there are systematic 
price differences between the stores. 

7. You and your friend are debating which type of candy is 
the best. You find data on the average rating for hard candy 
(e.g. jolly ranchers, ̅X = 3.60), chewable candy (e.g. starburst, 
̅X = 4.20), and chocolate (e.g. snickers, ̅X = 4.40); each type 
of candy was rated by 30 people. Test for differences in average 
candy rating using SSB = 16.18 and SSW = 28.74. 

8. Administrators at a university want to know if students in 
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different majors are more or less extroverted than others. They 
provide you with data they have for English majors (̅X = 3.78, n 
= 45), History majors (̅X = 2.23, n = 40), Psychology majors (̅X 
= 4.41, n = 51), and Math majors (̅X = 1.15, n = 28). You find the 
SSB = 75.80 and SSW = 47.40 and test at α = 0.05. 

9. You are assigned to run a study comparing a new 
medication (̅X = 17.47, n = 19), an existing medication (̅X = 
17.94, n = 18), and a placebo (̅X = 13.70, n= 20), with higher 
scores reflecting better outcomes. Use SSB = 210.10 and SSW = 
133.90 to test for differences. 

10. You are in charge of assessing different training methods 
for effectiveness. You have data on 4 methods: Method 1 (̅X = 
87, n = 12), Method 2 (̅X = 92, n = 14), Method 3 (̅X = 88, n = 15), 
and Method 4 (̅X = 75, n = 11). Test for differences among these 
means, assuming SSB = 64.81 and SST = 399.45. 

Answers to Odd- Numbered Exercises – Ch. 
14 

1. Variance between groups (SSB), variance within groups (SSW) 
and total variance (SST). 

3. Post hoc tests are run if we reject the null hypothesis in 
ANOVA; they tell us which specific group differences are 
significant.5. Finish filling out the following ANOVA tables: 

Problem 1: 

Source SS df MS F 

Between 28.20 2 14.10 4.26 

Within 36.45 11 3.31 

Total 64.65 13 

Problem 2: 
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Source SS df MS 

Between 210.10 2 105.05 

Within 133.92 54 2.48 

Total 344.02 

7. Step 1: H0: μ1 = μ2 = μ3 “There is no difference in average rating 
of candy quality”, HA: “At least one mean is different.” 
Step 2: 3 groups and 90 total observations yields dfnum = 2 and 
dfden = 87, α = 0.05, F* = 3.11. 

Step 3: based on the given SSB and SSW and the computed df 
from step 2, is: 

Source SS df MS F 

Between 16.18 2 8.09 24.52 

Within 28.74 87 0.33 

Total 44.92 89 

Step 4: F > F*, reject H0. Based on the data in our 3 groups, we 
can say that there is a statistically significant difference in the 
quality of different types of candy, F(2,87) = 24.52, p < .05. Since 
the result is significant, we need an effect size: η2 = 16.18/44.92 = 
.36, which is a large effect. 
9. Step 1: H0: μ1 = μ2 = μ3 “There is no difference in average 
outcome based on treatment”, HA: “At least one mean is 
different.” 
Step 2: 3 groups and 57 total participants yields dfnum = 2 and 
dfden = 54, α = 0.05, F* = 3.18. 

Step 3: based on the given SSB and SSW and the computed df 
from step 2, is: 
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Source SS df MS F 

Between 210.10 2 105.02 42.36 

Within 133.90 54 2.48 

Total 344.00 56 

Step 4: F > F*, reject H0. Based on the data in our 3 groups, 
we can say that there is a statistically significant difference 
in the effectiveness of the treatments, F(2,54) = 42.36, p < .05. 
Since the result is significant, we need an effect size: η2 = 210.10/
344.00 = .61, which is a large effect. 
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15.  Chapter 15: 2 - 
Factor ANOVA 

A single factor ANOVA is the statistical analysis appropriate 
when we are analyzing the results of an experiment in which 
we have one factor and are looking for differences in the 
response variable among three or more groups, each of which 
is receiving different levels or amounts of the factor. In chapter 
14, we learned about the single factor ANOVA, also known as 
the one-way.  We will now conceptually review a multi-factor 
ANOVA.  We will keep it on the simpler side and use 2-factors 
(two independent/predictor variables) using a between-
subjects design. 

Logic of a 2 Factor ANOVA 

A two factor ANOVA is used when we believe that more than 
one factor may affect a particular response (dependent) 
variable. For example, believe that the age of an adolescent 
will have an impact on number of phone calls made to the 
opposite sex and I also suspect that gender of the adolescent 
will have an impact on the number of phone calls made to the 
opposite sex. 

To test my hypothesis that Age and Gender of adolescent will 
impact the number of phone calls made to the opposite sex in 
the past week. In this case, we have a between-subjects design 
for both age and gender.  I have 2 conditions/levels/groups for 
each factor/variable. I will have to collect data for these for 4 
samples of subjects: 
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Age 

Gender 

Teen Males Teen Females 

Older Males Older Females 

Table 1. Example of 2×2 ANOVA 
A 2×2 ANOVA gives you 4 conditions.  Note: one way to identify 
the total conditions in a factorial study is to multiply the 
conditions for each factor. Thus, a 2×2 design is 2 times 2 
giving us 4 total conditions for the study. We will discuss this 
more in a moment. 

Remember that there are different types of ANOVAs based on 
design.  In this case, we have a between-subjects design.  An 
individual can only be in 1 condition for gender and 1 condition 
for age.  So among the 4 total conditions/levels/groups 
between the 2 factors, an individual is only in 1 of the samples. 
For a between-subjects design, there are 4 different samples. 
Two Factor ANOVA data is commonly organized like the table 
above and is referred to a matrix. When the data is organized in 
a matrix it is very easy to see the factors, as well as the separate 
levels of the factors. 

• Factorial designs like the 2-Factor ANOVA allow a 
researcher to examine more than one independent 
variable on the dependent variable 

◦ Individually for each factor, reporting out a F for each 
◦ Collectively where the collective influence of the 

factors is referred to as an interaction. An interaction is 
the result of the two independent variables combining 
to produce a result that is different from a result that 
is produced by either variable alone. 

• A 2-Factor ANOVA allows a researcher to assess the main 
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effects (the independent variables) and the interaction 
yielding three outcomes (3 Fs), a F for factor 1, a F for factor 
2 and an interaction between factor 1 and 2. 

Let’s go back to our example: 

• Main Effect of Factor A 

◦ Is there a significant effect of age of teen (Factor A) on 
number of phone calls made to the opposite sex 
(response variable). 

• Main Effect of Factor B 

◦ Is there a significant effect of sex of the teen (Factor B) 
on number of phone calls made to the opposite sex 
(response variable). 

• Interaction of AxB 

◦ Does the effect of age of teen (Factor A) on the 
number of phone calls made to the opposite sex 
(response variable) depend on the sex of the teen 
(Factor B)? 

Conducting a Two Factor ANOVA 

Before we begin the process of calculating a 2-Factor 
ANOVA we need to review several key elements of the 
study: 

• Factors: the independent variables/predictors 
• Levels of each factor: how many conditions/groups/

treatments a factor has 
• Response variable: this is the dependent variable/

outcome variable/measurement taken 

446  |  Chapter 15: 2 - Factor ANOVA



• Total number of condition in the experiment: this is 
identified by multiplying out the number of levels for each 
factor 

• Number of subjects per condition, n: how many 
participants are in each level/group/treatment 

• Total number of experiment participants, N: this will be 
determined by type of factor for each. In a between-group 
design, there will be four different conditions of 
participants.  In a complete repeated measures design, all 
participants are in all conditions.  In mixed design, it will 
vary by the study design for each factor.  For this chapter, 
we are focused on a between subjects design. 

Remember that in experiments that are designed to test 
for a cause and effect relationship between two variables 
(experimental designs) the factor is the variable 
hypothesized to cause something to happen. The 
response variable is the variable we believe will be 
affected (changed) by the factor. 

Level of each factor refers to the categories of a factor 
represented in the experiment. In our example of age 
and gender the number of levels was 2 x 2 – we refer 
to design by its levels (can also call them conditions/
groups/treatments). 

Age 

Gender 

Teen Males Teen Females 

Older Males Older Females 

Our example from Table 1 was a 2 x 2 design because there 
were two levels of the age variable (i.e., younger and older) and 
two levels of gender (i.e., male and female). 
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Total number of groups in the experiment equals the 
number of levels in Factor A multiplied by the number of 
levels for Factor B. For our example, there were four 
conditions. Another way to think about the number of groups 
or conditions is the number of cells in the matrix. 

In a factorial design like the 2-Factor ANOVA, the number of 
subjects per condition is denoted by n and the total number 
of experiment participants is denoted by N. For example, if 
each condition has 10 participants, then n = 10. The experiment 
would have N = 40. In other words, 4 conditions with 10 
participations (n = 10) (4 x 10) = 40 participants in the study. 

Hypothesis Testing 

We use the same steps for 2- Factor ANOVA that we have used 
for all other test statistics. 

Write the alternative and null hypotheses 

• 3 separate set of hypotheses: one set for each F 

◦ A effect (factor 1) 
◦ B effect (factor 2) 
◦ Interaction (A x B or factor 1 x 2) 

These are three separate ANOVA tests yielding 3 Fs that are 
independent and the results are unrelated to the outcome for 
either of the other two.  The hypotheses are set up in the same 
way as chapter 14.  We will see an example for an interaction 
later in the chapter. 
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Set criteria for decision making 

There are three hypotheses and three F scores so there will be 
three critical boundaries. The critical boundary of F comes from 
the F distribution table. 

We need to know: 

◦ Alpha (α) 
◦ degrees of freedom Factor A = dfA = (kA -1) where kA is 

number of levels 
◦ degrees of freedom Factor B = dfB = (kB -1) where kB is 

number of levels 
◦ degrees of freedom Interaction (A x B) = dfA*B = kA * kB 

◦ degrees of freedom for within treatment = dftotal – (dfA 

+ dfB + dfA*B) [within treatment is also called error] 
◦ degrees of freedom total = dftotal = N – 1 where N is the 

total number of scores 

Note: We would still use the critical value ANOVA table for the 
critical F-values. The critical values may not be the same for 
each hypothesis; it will depend on the number of rows and 
columns used in the study!  We will see this in an example later 
in the chapter. 
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Sample data are collected and analyzed by 
performing statistics (calculations for our 
adjusted step 3) 

In the first stage of calculations Sum of Squares (SS) Total 
is calculated and then separated into the two components SS 
Between Treatments and SS Within Treatments. 

In the second stage the SS Between Treatments is separated 
into the three factors: Factor A, Factor B & Factor A X B 
(interaction factor) 

Source SS df 

Between Treatment (b/t) SSA + SSB+SSA*B 
(kA -1)+ (kB -1) 

Factor A (identify from info. given) (kA -1) 

Factor B (identify from info. given) (kB -1) 

Interaction (identify from info. given) (kA)(kB -1) 

Within Treatment (w/i) SStotal – SSb/t 
dftotal – df b/t or N 
– dfb/t 

Total SSBetween+SSwithin N – 1 

Table 2. ANOVA summary table with calculations 
Note: In real life, we would run this through a statistical 
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program with the raw data to calculate the Fs! We are focusing 
conceptually on calculating the 3 Fs for a two-way factorial 
ANOVA. Notice that in Table 2, the Sum of Squares Between is 
adding up the Sum of Squares from each of the factors. You 
also see that to get to our F-ratios, we need the Mean Squares 
(just like chapter 14).  We have an F for each: Factor A, Factor B 
and the Interaction Factor. The calculations for Sum of Square 
for the factors can be found be knowing the df and MS, or 
knowing the Sum of Squares Between. 

You would also be most likely given the means and standard 
deviations for the 4 study conditions.  Here is an example from 
Table 1 (made up data).  You will see the main value as the 
mean and the standard deviation in parentheses. 

Age 

Gender 

Teen Males 
M = 3.5 (.3) 

Teen Females 
M = 4.5 (.25) 

Older Males 
          M = 8 (.5) 

Older Females 
M = 12.5 (.8) 

Table 2. Means and Standard Deviations example from Table 1 
study design. 

Possible outcomes for 2-way factorial ANOVA 

In a 2 X 2 design, there are eight possibilities: 

1. A main effect for factor A only 
2. A main effect for factor B only 
3. Main effects for A and B only 
4. A main effect for A, plus an interaction 
5. A main effect for B, plus an interaction 
6. Main effects for both A and B, plus an interaction 
7. An interaction only, no main effects 
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8. No main effects, no interaction 

Figure 1 shows examples of how these findings might look 
graphing the means of each of the 4 study conditions in a 2×2 
design. 

Figure 1. Examples of eight outcomes of a 2×2 ANOVA 

Make your decision and explain the results 
(adjusted step 4). 

• When making a statistical decision you should begin by 
looking for patterns in the means from each of the total 
conditions rather than focusing on the main effects or the 
interaction. After identifying patterns begin interpreting 
with the interaction effects first. 

• Interaction means that the effect of one factor depends on 
the level of a second factor – so then there is no consistent 
main effect. If you get a significant interaction, emphasize 
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that finding over any significant main effects. In other 
words, if there is an interaction effect, then the main effect 
cannot be discussed without a qualifier. 

Calculate effect size 

• Effect size is calculated for each F that is statistically 
significant. 

• Effect size reported is typically eta-square. Remember that 
from chapter 14, eta-square is the percentage of total 
variance explained variance by the factor.  Again, just as 
you have a F for factor A, a F for factor B, and an F for the 
interaction, you would have eta-squares for each. 

Graphing the Results of Factorial Experiments 

The results of factorial experiments with two independent 
variables can be graphed by representing one independent 
variable on the x-axis and representing the other by using 
different kinds of bars or lines. The y-axis is always reserved for 
the dependent variable. 

Figure 2. A 4 (Psychotherapy Length) x 2 (Type) ANOVA. 
The figure above is a line graph that shows results for 
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a hypothetical 4 x 2 factorial experiment Psychotherapy 
length, is represented along the x-axis and has four levels 
(e.g., 2 weeks, 4 weeks, 6 weeks and 8 weeks) and the other 
variable (psychotherapy type) is represented by differently 
formatted lines. 

Advantages & Disadvantages 

Considerations 
A 2-Factor ANOVA design is relatively easy to carry out and 

requires fewer subjects than other types of designs. There is 
no pre-testing necessary because one group could serve as the 
control. Although identifying sample sizes and study design for 
power is an important consideration using a factorial ANOVA. 

Disadvantages 
A 2-Factor ANOVA using a between-subjects design provides 

little information about the effect of the independent variable. 
The statistic provides information about whether the two 
groups differed (on average) and in which direction but it is 
not sensitive to individual differences.  Other considerations for 
2-Factor ANOVAs include using a repeated measures ANOVA. 
In this case for a 2-factor ANOVA, each person would be in every 
condition.  So if you had a 2×2 an individual would be in all 
4 study conditions.  Another considerations is having a mixed 
design.  For a mixed design, one factor would be between-
subjects and the other would be within-subjects (repeated 
measures).  For example, you might wish to conduct a 2×2 
study on drug therapy.  You can examine gender differences as 
one factor and type of drug as the other factor.  Participants 
are only in 1 gender category but would receive both types of 
drug.  A mixed design would give you individual differences in 
how each participant responded to the drug, but also has some 
of the challenges of using a within-subjects design (see short 
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discussion in chapter 12 on advantages and disadvantages of 
using a repeated measures design). 

Learning Objectives 

Having read the chapter, students should be able to: 

• Explain the concept of a two-factor research design and 
recognize a matrix with levels of one factor being rows and 
levels of the second factor being columns 

• Explain main effects and interactions in a two-factor 
ANOVA including patterns of findings 

• Complete a ANOVA table given some information from 
the study 

• Interpret effect size 

Exercises – Ch 15 

1. True or false. The bigger the differences between the 
sample means, the more likely it is that at least one of the 
Fs will be significant. 

2. True or false. The advantage of combining two factors into 
a single research study is that the two factor study 
provides information about the interaction of the two 
factors and the main effects of each factor. 

3. Complete the ANOVA table given this is a 2×3 ANOVA 
(two-way ANOVA; factor A = 2 levels with n = 5; factor B = 3 
levels with n = 5; N = 30) 
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Source SS df MS F 

Between Treatment 60 

Factor A 5 

Factor B 

Interaction 30 

Within Treatment 2 

Total 108 

4. What is the df for factor A, B and AxB for the following? 
What are the corresponding F-critical values? 

1. factor A n=14; factor B n = 18; N = 32 

Answers to Exercises – Ch 15 

1. true 
3. 

Source SS df MS F 

Between Treatment 60 5 

Factor A 10 1 10 5 

Factor B 20 2 10 5 

Interaction 30 2 15 7.5 

Within Treatment 48 24 2 

Total 108 29 
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16.  Chapter 16: 
Correlations 

Hypothesis testing beyond t-tests and 
ANOVAs 

All of our analyses thus far have focused on comparing the 
value of a continuous variable across different groups via 
mean differences (t-tests and ANOVAs). These next few 
chapters will take you beyond having the predictor variable as 
categorical (nominal) with a continuous (interval/ratio) 
outcome variable. We will continue to use the same 
hypotheses testing logic and procedures with new types of 
data. 
The type of data we have used in most chapters (except 
chapter 15) is bivariate data — “bi” for two variables. In reality, 
statisticians use multivariate data, meaning many variables. In 
this lesson, you will be studying correlation which is the 
relationship between two variables. We will also be covering 
the simplest form of regression – linear regression – with one 
independent variable (x). This chapter is focused on how to 
assess the relation between two continuous variables in the 
form of correlations. As we will see, the logic behind 
correlations is the same as it was group means (focus on 
previous chapters with hypothesis testing), but we will now 
have the ability to assess an entirely new data structure. 

There are several different types of correlation coefficients.  A 
correlation coefficient is a measure that varies from -1 to 1, 
where a value of 1 represents a perfect positive relationship 
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between the variables, 0 represents no relationship, and -1 
represents a perfect negative relationship. 

In this chapter we will focus on Pearson’s r, which is a 
measure of the strength of the linear relationship between two 
continuous variables. r was developed by Karl Pearson in the 
early 1900s. We will see r as a way to quantify the relation 
between two variables to describe a linear relationship. 

Karl Pearson at his desk Source 
Figure 1 shows examples of various levels of correlation using 

randomly generated data for two continuous variables 
(reporting Pearson’s rs). We will learn more about interpreting 
a correlation coefficient when we discuss direction and 
magnitude later in the chapter. 
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Figure 1: Examples of various levels of Pearson’s r. 

Variability and Covariance 

A common theme throughout statistics is the notion that 
individuals will differ on different characteristics and traits, 
which we call variance. In inferential statistics and hypothesis 
testing, our goal is to find systematic reasons for differences 
and rule out random chance as the cause. By doing this, we 
are using information on a different variable – which so far 
has been group membership like in ANOVA – to explain this 
variance. In correlations, we will instead use a continuous 
variable to account for the variance. Because we have two 
continuous variables, we will have two characteristics or score 
on which people will vary. What we want to know is do people 
vary on the scores together. That is, as one score changes, does 
the other score also change in a predictable or consistent way? 
This notion of variables differing together is called covariance 
(the prefix “co” meaning “together”). 
Let’s look at our formula for sample variance on a single 
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variable (learned in chapter 4): 

We use X to represent a person’s score on the variable at hand, 
and ̅X to represent the mean of that variable. The numerator 
of this formula is the Sum of Squares, which we have seen 
several times for various uses. Recall that squaring a value is 
just multiplying that value by itself. Thus, we can write the 
same equation but use Σ(X- ̅X)(X- ̅X) on top. This is the 
same formula and works the same way as before, where we 
multiply the deviation score by itself (we square it) and then 
sum across squared deviations. 
Now, let’s look at the formula for covariance. In this formula, 
we will still use X to represent the score on one variable, and 
we will now use Y to represent the score on the second 
variable. We will still use bars to represent averages of the 
scores. 
The formula for covariance (covXY with the subscript XY to 
indicate covariance across the X and Y variables) is: 

Covariance sample formula: 

As we can see, this is the exact same structure as the previous 
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formula. Now, instead of multiplying the deviation score by 
itself on one variable, we take the deviation scores from a 
single person on each variable and multiply them together. 
We do this for each person (exactly the same as we did for 
variance) and then sum them to get our numerator. The 
numerator in this is called the Sum of Products. 

Sum of Products formula: 

We will calculate the sum of products using the same table we 
used to calculate the sum of squares. In fact, the table for sum 
of products is simply a sum of squares table for X, plus a sum of 
squares table for Y, with a final column of products, as shown 
below. 

X (X − ̅X) (X − ̅X)2 Y (Y − ̅Y) (Y − ̅Y)2 (X − ̅X)(Y − 

(if need s2) (if need s2) 

… … … … … … … 

∑ (total up for SP

Table 1. Example for calculating Sum of Products 
This table works the same way that it did before (remember 
that the column headers tell you exactly what to do in that 
column). We list our raw data for the X and Y variables in the X 
and Y columns, respectively, then add them up so we can 
calculate the mean of each variable. We then take those 
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means and subtract them from the appropriate raw score to 
get our deviation scores for each person on each variable, and 
the columns of deviation scores will both add up to zero. We 
will square our deviation scores for each variable to get the 
sum of squares for X and Y so that we can compute the 
variance and standard deviation of each (we will use the 
standard deviation in our equation below). Finally, we take the 
deviation score from each variable and multiply them 
together to get our product score. Summing this column will 
give us our sum of products. It is very important that you 
multiply the raw deviation scores from each variable, NOT the 
squared deviation scores.  The squared deviation scores are 
included in case standard deviation (s) or variance (s2) are 
needed). 
Our sum of products will go into the numerator of our formula 
for covariance, and then we only have to divide by n – 1 to get 
our covariance. Unlike the sum of squares, both our sum of 
products and our covariance can be positive, negative, or 
zero, and they will always match (e.g. if our sum of products is 
positive, our covariance will always be positive). A positive sum 
of products and covariance indicates that the two variables are 
related and move in the same direction. That is, as one variable 
goes up, the other will also go up, and vice versa. A negative 
sum of products and covariance means that the variables are 
related but move in opposite directions when they change, 
which is called an inverse relation. In an inverse relation, as one 
variable goes up, the other variable goes down. If the sum of 
products and covariance are zero, then that means that the 
variables are not related. As one variable goes up or down, the 
other variable does not change in a consistent or predictable 
way. 

The previous paragraph brings us to an important definition 
about relations between variables. What we are looking for in 
a relation is a consistent or predictable pattern. That is, the 

462  |  Chapter 16: Correlations



variables change together, either in the same direction or 
opposite directions, in the same way each time. It doesn’t 
matter if this relation is positive or negative, only that it is not 
zero. If there is no consistency in how the variables change 
within a person, then the relation is zero and does not exist. We 
will revisit this notion of direction vs zero relation later on. 

Visualizing Relations 

Chapter 3 covered many different forms of data visualization, 
and visualizing data remains an important first step in 
understanding and describing out data before we move into 
inferential statistics. Nowhere is this more important than in 
correlation. Correlations are visualized by a scatterplot, where 
our X variable values are plotted on the X-axis, the Y variable 
values are plotted on the Y-axis, and each point or marker in 
the plot represents a single person’s score on X and Y. Figure 2 
shows a scatterplot for hypothetical scores on job satisfaction 
(X) and worker well-being (Y). We can see from the axes that 
each of these variables is measured on a 10- point scale, with 10 
being the highest on both variables (high satisfaction and good 
health and well-being) and 1 being the lowest (dissatisfaction 
and poor health).When we look at this plot, we can see that 
the variables do seem to be related. The higher scores on job 
satisfaction tend to also be the higher scores on well-being, 
and the same is true of the lower scores. 
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Figure 2. Plotting satisfaction and well-being scores. 

Figure 2 demonstrates a positive relation. As scores on X 
increase, scores on Y also tend to increase. Although this is not 
a perfect relation (if it were, the points would form a single 
straight line), it is nonetheless very clearly positive. This is one 
of the key benefits to scatterplots: they make it very easy to 
see the direction of the relation. As another example, figure 
3 shows a negative relation between job satisfaction (X) and 
burnout (Y). As we can see from this plot, higher scores on 
job satisfaction tend to correspond to lower scores on burnout, 
which is how stressed, unenergetic, and unhappy someone is 
at their job. As with figure 2, this is not a perfect relation, but 
it is still a clear one. As these figures show, points in a positive 
relation moves from the bottom left of the plot to the top right, 
and points in a negative relation move from the top left to the 
bottom right. 
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Figure 3. Plotting satisfaction and burnout scores. 
Scatterplots can also indicate that there is no relation between 
the two variables. In these scatterplots (an example is shown 
below in figure 4 plotting job satisfaction and job 
performance) there is no interpretable shape or line in the 
scatterplot. The points appear randomly throughout the plot. 
If we tried to draw a straight line through these points, it 
would basically be flat. The low scores on job satisfaction have 
roughly the same scores on job performance as do the high 
scores on job satisfaction. Scores in the middle or average 
range of job satisfaction have some scores on job performance 
that are about equal to the high and low levels and some 
scores on job performance that are a little higher, but the 
overall picture is one of inconsistency. 

As we can see, scatterplots are very useful for giving us an 
approximate idea of whether or not there is a relation between 
the two variables and, if there is, if that relation is positive or 
negative. They are also useful for another reason: they are the 
only way to determine one of the characteristics of correlations 
that are discussed next: form. 
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Figure 4. Plotting no relation between satisfaction and job 
performance. 

Three Characteristics 

When we talk about correlations, there are three traits that we 
need to know in order to truly understand the relation (or lack 
of relation) between X and Y: form, direction, and magnitude. 
We will discuss each of them in turn. 

Form 

The first characteristic of relations between variables is their 
form. The form of a relation is the shape it takes in a scatterplot, 
and a scatterplot is the only way it is possible to assess the 
form of a relation. there are three forms we look for: linear, 
curvilinear, or no relation. A linear relation is what we saw 
in figures 1, 2, and 3. If we drew a line through the middle 
points in the any of the scatterplots, we would be best suited 

466  |  Chapter 16: Correlations



with a straight line. The term “linear” comes from the word 
“line”. A linear relation is what we will always assume when 
we calculate correlations. All of the correlations presented here 
are only valid for linear relations. Thus, it is important to plot 
our data to make sure we meet this assumption. 

The relation between two variables can also be curvilinear. As 
the name suggests, a curvilinear relation is one in which a line 
through the middle of the points in a scatterplot will be curved 
rather than straight. Two examples are presented in figures 5 
and 6. 

Figure 5. Exponentially increasing curvilinear relation 
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Figure 6. Inverted-U curvilinear relation. 
Curvilinear relations can take many shapes, and the 

two examples above are only a small sample of the 
possibilities. What they have in common is that they 
both have a very clear pattern but that pattern is not 
a straight line. If we try to draw a straight line through 
them, we would get a result similar to what is shown 
in figure 7. 
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Figure 7. Overlaying a straight line on a curvilinear relation. 
Although that line is the closest it can be to all points at the 
same time, it clearly does a very poor job of representing the 
relation we see. Additionally, the line itself is flat, suggesting 
there is no relation between the two variables even though 
the data show that there is one. This is important to keep in 
mind, because the math behind our calculations of correlation 
coefficients will only ever produce a straight line – we cannot 
create a curved line with the techniques discussed here. 
Finally, sometimes when we create a scatterplot, we end up 
with no interpretable relation at all. An example of this is 
shown below in figure 8. The points in this plot show no 
consistency in relation, and a line through the middle would 
once again be a straight, flat line. 
Sometimes when we look at scatterplots, it is tempting to get 
biased by a few points that fall far away from the rest of the 
points and seem to imply that there may be some sort of 
relation. These points are called outliers, and we will discuss 
them in more detail later in the chapter. These can be 
common, so it is important to formally test for a relation 
between our variables, not just rely on visualization. This is the 
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point of hypothesis testing with correlations, and we will go in 
depth on it soon. First, however, we need to describe the other 
two characteristics of relations: direction and magnitude. 

Figure 8. No relation 
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Figure 9. No relations fictional data scatterplot between job 
satisfaction and job performance 

Direction 

The direction of the relation between two variables tells us 
whether the variables change in the same way at the same 
time or in opposite ways at the same time. We saw this concept 
earlier when first discussing scatterplots, and we used the 
terms positive and negative. A positive relation is one in which 
X and Y change in the same direction: as X goes up, Y goes 
up, and as X goes down, Y also goes down. A negative relation 
is just the opposite: X and Y change together in opposite 
directions: as X goes up, Y goes down, and vice versa. 

As we will see soon, when we calculate a correlation coefficient, 
we are quantifying the relation demonstrated in a scatterplot. 
That is, we are putting a number to it. That number will be 
either positive, negative, or zero, and we interpret the sign of 
the number as our direction. If the number is positive, it is a 
positive relation, and if it is negative, it is a negative relation. If 
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it is zero, then there is no relation. The direction of the relation 
corresponds directly to the slope of the hypothetical line we 
draw through scatterplots when assessing the form of the 
relation. If the line has a positive slope that moves from bottom 
left to top right, it is positive, and vice versa for negative. If the 
line it flat, that means it has no slope, and there is no relation, 
which will in turn yield a zero for our correlation coefficient. 

Magnitude 

The number we calculate for our correlation coefficient, which 
we will describe in detail below, corresponds to the magnitude 
of the relation between the two variables. The magnitude is 
how strong or how consistent the relation between the 
variables is. Higher numbers mean greater magnitude, which 
means a stronger relation. Our correlation coefficients will take 
on any value between -1.00 and 1.00, with 0.00 in the middle, 
which again represents no relation. A correlation of -1.00 is a 
perfect negative relation; as X goes up by some amount, Y goes 
down by the same amount, consistently. Likewise, a correlation 
of 1.00 indicates a perfect positive relation; as X goes up by 
some amount, Y also goes up by the same amount. Finally, a 
correlation of 0.00, which indicates no relation, means that as 
X goes up by some amount, Y may or may not change by any 
amount, and it does so inconsistently. 
The vast majority of correlations do not reach -1.00 or positive 
1.00. Instead, they fall in between, and we use rough cut offs 
for how strong the relation is based on this number. 
Importantly, the sign of the number (the direction of the 
relation) has no bearing on how strong the relation is. The only 
thing that matters is the magnitude, or the absolute value of 
the correlation coefficient. A correlation of -1 is just as strong as 
a correlation of 1. We generally use values of 0.10, 0.30, and 0.50 
as indicating weak, moderate, and strong relations, 
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respectively. 
The strength of a relation, just like the form and direction, can 
also be inferred from a scatterplot, though this is much more 
difficult to do. Some examples of weak and strong relations 
are shown in figures 9 and 10, respectively. Weak correlations 
still have an interpretable form and direction, but it is much 
harder to see. Strong correlations have a very clear pattern, 
and the points tend to form a line. The examples show two 
different directions, but remember that the direction does not 
matter for the strength, only the consistency of the relation 
and the size of the number, which we will see next. 

Figure 10. Weak positive correlation. 
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Figure 11. Strong negative correlation. 

Pearson’s r 

There are several different types of correlation coefficients, but 
we will only focus on the most common: Pearson’s r. r is a very 
popular correlation coefficient for assessing linear relations, 
and it serves as both a descriptive statistic (like ̅X aka M) and 
as a test statistic (like t). It is descriptive because it describes 
what is happening in the scatterplot; r will have both a sign 
(+/–) for the direction and a number (0 – 1 in absolute value) 
for the magnitude. As noted above, assumes a linear relation, 
so nothing about r will suggest what the form is – it will only 
tell what the direction and magnitude would be if the form is 
linear (Remember: always make a scatterplot first!). r also works 
as a test statistic because the magnitude of r will correspond 
directly to a t value as the specific degrees of freedom, which 
can then be compared to a critical value. Luckily, we do not 
need to do this conversion by hand. Instead, we will have a 
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table of r critical values that looks very similar to our t table, and 
we can compare our r directly to those. 

The conceptual formula for r is very simple: it is 
just the covariance (defined above) divided by the 
standard deviations of X and Y: 

Note: This formula gives a direct sense of what a 
correlation is: a covariance standardized onto the 
scale of X and Y. 

We can also compute Pearson another way.  The 
second formula is computationally simpler and 
faster. Both of these equations will give the same 
value. When we do this calculation, we will find that 
our answer is always between -1.00 and 1.00 (if it’s not, 
check the math again), which gives us a standard, 
interpretable metric, similar to what z-scores did. 

Computation r formula:                                               
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                                                                                 If data 

population:  

Correlation as a descriptive and as a test statistic 

It was stated earlier that r is a descriptive statistic like ̅X (or 
M), and just like ̅X (or M), it corresponds to a population 
parameter. For correlations, the population parameter is the 
lowercase Greek letter ρ (“rho”); be careful not to confuse ρ 
with a p-value – they look quite similar. r is an estimate of ρ 
just like ̅X is an estimate of μ. Thus, we will test our observed 
value of r that we calculate from the data and compare it to a 
value of ρ specified by our null hypothesis to see if the relation 
between our variables is significant, as we will see in our 
example next. 
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Correlation & z-scores 

Table. 2. 

The table 2 shows that positive products of Z 
scores contribute toward making a positive 
correlation, negative products of Z scores con- 
tribute toward making a negative correlation, and 
products of Z scores that are zero (or close to zero) 
contribute toward making a correlation of zero. 

We still need to determine the strength of a 
positive or negative correlation on some standard 
scale. You cannot judge the strength of the 
correlation from the sum of the cross-products 
alone, because it gets bigger just by adding the 
cross-products of more people together. 

The solution is to divide this sum of the cross-
products by the number of people in the study. That 
is, you figure the average of the cross-products of Z 
scores. 

It turns out that because of the nature of Z scores, 
this average can never be more than +1, which 
would be a positive linear perfect correlation. It can 
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never be less than -1, which would be a negative 
linear perfect correlation. 

In the situation of no linear correlation, the 
average of the cross-products of Z scores is 0. 

Example: Anxiety and Depression 

Anxiety and depression are often reported to be highly linked 
(or “comorbid”). Our hypothesis testing procedure follows the 
same four-step process as before, starting with our null and 
alternative hypotheses. We will look for a positive relation 
between our variables among a group of 10 people because 
that is what we would expect based on them being comorbid. 

Step 1: State the Hypotheses 

Our hypotheses for correlations start with a baseline 
assumption of no relation, and our alternative will be 
directional if we expect to find a specific type of relation. For 
this example, we expect a positive relation: 

H0: There is no relation 
between anxiety and 
depression, H0: ρ = 0 

HA: There is a positive relation between anxiety and 
depression, H0: ρ > 0 

Remember that ρ (“rho”) is our population parameter for the 
correlation that we estimate with r, just like ̅X and µ for 
means. Remember also that if there is no relation between 
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variables, the magnitude will be 0, which is where we get the 
null and alternative hypothesis values. 

Step 2: Find the Critical Values 

The critical values for correlations come from the 
correlation table, which looks very similar to the 
t-table (see figure 12). Just like our t-table, the column 
of critical values is based on our significance level 
(α) and the directionality of our test. The row is 
determined by our degrees of freedom. For 
correlations, we have n– 2 degrees of freedom, rather 
than n – 1 (why this is the case is not important at the 
moment). For our example, we have 10 people, so our 
degrees of freedom = 10 – 2 = 8. 
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Figure 12. Correlation table 

We were not given any information about the level of 
significance at which we should test our hypothesis, so we will 
assume α = 0.05 as always. From our table, we can see that 
a 1-tailed test (because we expect only a positive relation) at 
the α = 0.05 level has a critical value of r* = 0.549. Thus, if our 
observed correlation is greater than 0.549, it will be statistically 
significant. This is a rather high bar (remember, the guideline 
for a strong relation is r = 0.50); this is because we have so 
few people. Larger samples make it easier to find significant 
relations. 
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Step 3: Calculate the Test Statistic 

We have laid out our hypotheses and the criteria we will use 
to assess them, so now we can move on to our test statistic. 
Before we do that, we must first create a scatterplot of the 
data to make sure that the most likely form of our relation is 
in fact linear. Figure 13 below shows our data plotted out, and 
it looks like they are, in fact, linearly related, so Pearson’s r is 
appropriate. 

Figure 13. Scatterplot of anxiety and depression 
The data we gather from our participants (n=10) is as follows: 
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Dep 2.81 1.96 3.43 3.40 4.71 1.80 4.27 3.68 2.44 3.13 

Anx 3.54 3.05 3.81 3.43 4.03 3.59 4.17 3.46 3.19 4.12 

Table 3. Data for step 3 to calculate r. 

Steps for Calculating r using the computational 
formula: 

1. Change all scores to Z scores. 

1. This requires using the mean and the standard 
deviation of each variable, then changing each raw 
score to a Z score.  This step is converting the raw 
scores to z-scores using the computational formula. 
See Table 4. 

Dep 2.81 1.96 3.43 3.40 4.71 1.80 4.27 3.68 2.44 3.13 M = 
3.163 

s 
=0.94 

Anx 3.54 3.05 3.81 3.43 4.03 3.59 4.17 3.46 3.19 4.12 M = 
3.639 

s = 
0.38 

Table 4. z-scores for anxiety and depression 

2. Figure the cross-product of the Z scores for each person. 
That is, for each person, multiply the person’s Z score on 
one variable by the person’s Z score on the other variable. 
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Zx Zy Zx*Zy 

-.38 -0.26 0.10 

-1.28 -1.55 1.98 

0.28 0.45 0.13 

0.25 -0.55 -0.14 

1.65 1.03 1.69 

-1.45 -0.13 0.19 

1.78 1.0 1.65 

0.55 -0.47 -0.26 

-0.77 -1.18 0.91 

-0.04 1.27 -0.04 

∑ = 6.20 

3. Add up the cross-products of the Z scores for Sum of 
Products. 

◦ Adding up the third column we get ∑ = 6.20. 

4. Divide by the n-1 using sample in the study. 

◦ There were 10 participants in the study. 
◦ 10-1 = 9 
◦ 6.2/9 = .69 

5. Describe the relationship in words. 

So our observed correlation between anxiety 
and depression is r = 0.69, which, based on sign 
and magnitude, is a strong, positive correlation. 
Now we need to compare it to our critical value 
to see if it is also statistically significant. 
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Step 4: Make a Decision 

Our critical value was r* = 0.549 and our obtained value was r
= 0.69. Our obtained value was larger than our critical value, so 
we can reject the null hypothesis. 

Reject H0. Based on our sample of 10 people, there is a 
statistically significant, strong, positive relation between 
anxiety and depression, r(8) = 0.70, p < .05. 

Notice in our interpretation that, because we already know the 
magnitude and direction of our correlation, we can interpret 
that. We also report the degrees of freedom, just like with t, and 
we know that p < α because we rejected the null hypothesis. As 
we can see, even though we are dealing with a very different 
type of data, our process of hypothesis testing has remained 
unchanged. 

Effect Size 

Pearson’s r is an incredibly flexible and useful statistic. Not only 
is it both descriptive and inferential, as we saw above, but 
because it is on a standardized metric (always between -1.00 
and 1.00), it can also serve as its own effect size. In general, 
we use r = 0.10, r = 0.30, and r = 0.50 as our guidelines for 
small, medium, and large effects. Just like with Cohen’s d, these 
guidelines are not absolutes, but they do serve as useful 
indicators in most situations. Notice as well that these are the 
same guidelines we used earlier to interpret the magnitude of 
the relation based on the correlation coefficient. 
In addition to r being its own effect size, there is an additional 
effect size we can calculate for our results. This effect size is r2, 
and it is exactly what it looks like – it is the squared value of our 
correlation coefficient. Just like η2 in ANOVA, r2 is interpreted 
as the amount of variance explained in the outcome variance, 
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and the cut scores are the same as well: 0.01, 0.09, and 0.25 for 
small, medium, and large, respectively. Notice here that these 
are the same cutoffs we used for regular r effect sizes, but 
squared (0.102 = 0.01, 0.302 = 0.09, 0.502 = 0.25) because, again, 
the r2 effect size is just the squared correlation, so its 
interpretation should be, and is, the same. The reason we use 
r2 as an effect size is because our ability to explain variance is 
often important to us. 

The similarities between η2 and r2 in interpretation and 
magnitude should clue you in to the fact that they are similar 
analyses, even if they look nothing alike. That is because, 
behind the scenes, they actually are! In the next chapter, we 
will learn a technique called Linear Regression, which will 
formally link the two analyses together. 

Correlation versus Causation 

We cover a great deal of material in introductory statistics and, 
as mentioned chapter 1, many of the principles underlying 
what we do in statistics can be used in your day to day life 
to help you interpret information objectively and make better 
decisions. We now come to what may be the most important 
lesson in introductory statistics: the difference between 
correlation and causation. 
It is very, very tempting to look at variables that are correlated 
and assume that this means they are causally related; that is, it 
gives the impression that X is causing Y. However, in reality, 
correlation do not – and cannot – do this. Correlations DO NOT 
prove causation. No matter how logical or how obvious or how 
convenient it may seem, no correlational analysis can 
demonstrate causality. The ONLY way to demonstrate a causal 
relation is with a properly designed and controlled 
experiment. 
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Many times, we have good reason for assessing the correlation 
between two variables, and often that reason will be that we 
suspect that one causes the other. Thus, when we run our 
analyses and find strong, statistically significant results, it is 
very tempting to say that we found the causal relation that we 
are looking for. The reason we cannot do this is that, without 
an experimental design that includes random assignment and 
control variables, the relation we observe between the two 
variables may be caused by something else that we failed to 
measure. These “third variables” are lurking variables or 
confound variables, and they are impossible to detect and 
control for without an experiment. 
Confound variables, which we will represent with Z, can cause 
two variables X and Y to appear related when in fact they are 
not. They do this by being the hidden– or lurking – cause of 
each variable independently. That is, if Z causes X and Z causes 
Y, the X and Y will appear to be related . However, if we control 
for the effect of Z (the method for doing this is beyond the 
scope of this text), then the relation between X and Y will 
disappear. 
A popular example for this effect is the correlation between ice 
cream sales and deaths by drowning. These variables are 
known to correlate very strongly over time. However, this does 
not prove that one causes the other. The lurking variable in 
this case is the weather – people enjoy swimming and enjoy 
eating ice cream more during hot weather as a way to cool off. 
As another example, consider shoe size and spelling ability in 
elementary school children. Although there should clearly be 
no causal relation here, the variables and nonetheless 
consistently correlated. The confound in this case? Age. Older 
children spell better than younger children and are also 
bigger, so they have larger shoes. 
When there is the possibility of confounding variables being 
the hidden cause of our observed correlation, we will often 
collect data on Z as well and control for it in our analysis. This is 
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good practice and a wise thing for researchers to do. Thus, it 
would seem that it is easy to demonstrate causation with a 
correlation that controls for Z. However, the number of 
variables that could potentially cause a correlation between X 
and Y is functionally limitless, so it would be impossible to 
control for everything. That is why we use experimental 
designs; by randomly assigning people to groups and 
manipulating variables in those groups, we can balance out 
individual differences in any variable that may be our cause. 
It is not always possible to do an experiment, however, so there 
are certain situations in which we will have to be satisfied with 
our observed relation and do the best we can to control for 
known confounds. However, in these situations, even if we do 
an excellent job of controlling for many extraneous (a 
statistical and research term for “outside”) variables, we must 
be very careful not to use causal language. That is because, 
even after controls, sometimes variables are related just by 
chance. 
Sometimes, variables will end up being related simply due to 
random chance, and we call these correlation spurious. 
Spurious just means random, so what we are seeing is random 
correlations because, given enough time, enough variables, 
and enough data, sampling error will eventually cause some 
variables to be related when they should not. Sometimes, this 
even results in incredibly strong, but completely nonsensical, 
correlations. This becomes more and more of a problem as our 
ability to collect massive datasets and dig through them 
improves, so it is very important to think critically about any 
relation you encounter. 
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A Reminder about Experimental Design 

When we say that one thing causes another, what 
do we mean? There is a long history in philosophy of 
discussion about the meaning of causality, but in 
statistics one way that we commonly think of 
causation is in terms of experimental control. That is, 
if we think that factor X causes factor Y, then 
manipulating the value of X should also change the 
value of Y. 

Often we would like to test causal hypotheses but 
we can’t actually do an experiment, either because 
it’s impossible (“What is the relationship between 
human carbon emissions and the earth’s climate?”) 
or unethical (“What are the effects of severe abuse 
on child brain development?”). However, we can still 
collect data that might be relevant to those 
questions. For example, we can potentially collect 
data from children who have been abused as well as 
those who have not, and we can then ask whether 
their brain development differs. 

Let’s say that we did such an analysis, and we 
found that abused children had poorer brain 
development than non-abused children. Would this 
demonstrate that abuse causes poorer brain 
development? No. Whenever we observe a 
statistical association between two variables, it is 
certainly possible that one of those two variables 
causes the other. However, it is also possible that 
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both of the variables are being influenced by a third 
variable; in this example, it could be that child abuse 
is associated with family stress, which could also 
cause poorer brain development through less 
intellectual engagement, food stress, or many other 
possible avenues. The point is that a correlation 
between two variables generally tells us that 
something is probably causing something else, but 
it doesn’t tell us what is causing what. 

Final Considerations 

Correlations, although simple to calculate, and be very 
complex, and there are many additional issues we should 
consider. We will look at two of the most common issues that 
affect our correlations, as well as discuss some other 
correlations and reporting methods you may encounter. 

Range Restriction 

The strength of a correlation depends on how much variability 
is in each of the variables X and Y. This is evident in the formula 
for Pearson’s r, which uses both covariance (based on the sum 
of products, which comes from deviation scores) and the 
standard deviation of both variables (which are based on the 
sums of squares, which also come from deviation scores). Thus, 
if we reduce the amount of variability in one or both variables, 
our correlation will go down. Failure to capture the full 
variability of a variability is called range restriction. 
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Take a look at figures 14 and 15 below. The first shows a strong 
relation (r = 0.67) between two variables. An oval is overlain on 
top of it to make the relation even more distinct. The second 
shows the same data, but the bottom half of the X variable (all 
scores below 5) have been removed, which causes our relation 
(again represented by a red oval) to become much weaker (r = 
0.38). Thus range restriction has truncated (made smaller) our 
observed correlation. 

Figure 14. Strong, positive correlation. 
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Figure 15. Effect of range restriction. 

Sometimes range restriction happens by design. For example, 
we rarely hire people who do poorly on job applications, so we 
would not have the lower range of those predictor variables. 
Other times, we inadvertently cause range restriction by not 
properly sampling our population. Although there are ways to 
correct for range restriction, they are complicated and require 
much information that may not be known, so it is best to be 
very careful during the data collection process to avoid it. 

Outliers 

Another issue that can cause the observed size of our 
correlation to be inappropriately large or small is the presence 
of outliers. An outlier is a data point that falls far away from 
the rest of the observations in the dataset. Sometimes outliers 
are the result of incorrect data entry, poor or intentionally 
misleading responses, or simple random chance. Other times, 
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however, they represent real people with meaningful values 
on our variables. The distinction between meaningful and 
accidental outliers is a difficult one that is based on the expert 
judgment of the researcher. Sometimes, we will remove the 
outlier (if we think it is an accident) or we may decide to keep 
it (if we find the scores to still be meaningful even though they 
are different). 

Pearson’s r is sensitive to outliers. For example, in Figure 16 we 
can see how a single outlying data point can cause a very high 
positive correlation value, even when the actual relationship 
between the other data points is perfectly negative. 

Figure 16. An simulated example of the effects of outliers on 
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correlation. Without the outlier the remainder of the data 
points have a perfect negative correlation, but the single outlier 
changes the correlation value to highly positive. 

One way to address outliers is to compute the correlation on 
the ranks of the data after ordering them, rather than on the 
data themselves; this is known as the Spearman correlation. 
Whereas the Pearson correlation for the example in Figure 15 
was 0.83, the Spearman correlation is -0.45, showing that the 
rank correlation reduces the effect of the outlier and reflects 
the negative relationship between the majority of the data 
points. 

Here are some more examples. The plots below in figure 16 
show the effects that an outlier can have on data. In the first, 
we have our raw dataset. You can see in the upper right corner 
that there is an outlier observation that is very far from the rest 
of our observations on both the X and Y variables. In the middle, 
we see the correlation computed when we include the outlier, 
along with a straight line representing the relation; here, it is a 
positive relation. In the third image, we see the correlation after 
removing the outlier, along with a line showing the direction 
once again. Not only did the correlation get stronger, it 
completely changed direction! 
In general, there are three effects that an outlier can have on a 
correlation: it can change the magnitude (make it stronger or 
weaker), it can change the significance (make a non-
significant correlation significant or vice versa), and/or it can 
change the direction (make a positive relation negative or vice 
versa). Outliers are a big issue in small datasets where a single 
observation can have a strong weight compared to the rest. 
However, as our samples sizes get very large (into the 
hundreds), the effects of outliers diminishes because they are 
outweighed by the rest of the data. Nevertheless, no matter 
how large a dataset you have, it is always a good idea to screen 
for outliers, both statistically (using analyses that we do not 
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cover here) and/or visually (using scatterplots). Also, one way to 
address outliers is to compute the correlation on the ranks of 
the data after ordering them, rather than on the data 
themselves; this is known as the Spearman correlation. 
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Figure 17. Three plots showing correlations with and without 
outliers. 

An misreported media example: 
Hate crimes and income inequality 

In 2017, the web site Fivethirtyeight.com published 
a story titled Higher Rates Of Hate Crimes Are Tied 
To Income Inequality which discussed the 
relationship between the prevalence of hate crimes 
and income inequality in the wake of the 2016 
Presidential election. The story reported an analysis 
of hate crime data from the FBI and the Southern 
Poverty Law Center, on the basis of which they 
report: 

“we found that income inequality was the 
most significant determinant of population-
adjusted hate crimes and hate incidents 
across the United States”. 

The analysis reported in the story focused on the 
relationship between income inequality (defined by 
a quantity called the Gini index — see Appendix for 
more details) and the prevalence of hate crimes in 
each state. 
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Figure 18: Plot of rates of hate crimes vs. Gini 
index. 

 

The relationship between income inequality and 
rates of hate crimes is shown in Figure 18. Looking at 
the data, it seems that there may be a positive 
relationship between the two variables. The 
correlation value of 0.42 between hate crimes and 
income inequality seems to indicate a reasonably 
strong relationship between the two, but we can 
also imagine that this could occur by chance even if 
there is no relationship. We can test the null 
hypothesis that the correlation is zero using a 
statistical program (similar to our step 2). We get 
r(48) = .42, [.16,.63], p = .002. The numbers reported in 
the brackets are the 95% confidence interval for r.
This test shows that the likelihood of an r value this 
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extreme or more is quite low under the null 
hypothesis, so we would reject the null hypothesis 
there is no relationship. Note that this test assumes 
that both variables are normally distributed. 
However, you may have noticed something a bit 
odd in Figure 17 – one of the datapoints (the one for 
the District of Columbia) seemed to be quite 
separate from the others. We refer to this as an
outlier, and the standard correlation coefficient is 
very sensitive to outliers. When we calculate 
Spearman’s rho (ρ) (less sensitive to outliers), ρ = .033, 
p = .08. Now we see that the correlation is no longer 
significant (and in fact is very near zero), suggesting 
that the claims of the FiveThirtyEight blog post may 
have been incorrect due to the effect of the outlier. 

 

Other Correlation Coefficients 

In this chapter we have focused on Pearson’s r as our 
correlation coefficient because it very common and very useful. 
There are, however, many other correlations out there, each 
of which is designed for a different type of data. The most 
common of these is Spearman’s rho (ρ), which is designed to 
be used on ordinal data rather than continuous data. This is 
a very useful analysis if we have ranked data or our data do 
not conform to the normal distribution. There are even more 
correlations for ordered categories, but they are much less 
common and beyond the scope of this chapter. 
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Additionally, the principles of correlations underlie many other 
advanced analyses. In the next chapter, we will learn about 
regression, which is a formal way of running and analyzing a 
correlation that can be extended to more than two variables. 
Regression is a very powerful technique that serves as the basis 
for even our most advanced statistical models, so what we have 
learned in this chapter will open the door to an entire world of 
possibilities in data analysis. 

Correlation Matrices 

Many research studies look at the relation between more than 
two continuous variables. In such situations, we could simply 
list our all of our correlations, but that would take up a lot of 
space and make it difficult to quickly find the relation we are 
looking for. Instead, we create correlation matrices so that we 
can quickly and simply display our results. A matrix is like a 
grid that contains our values. There is one row and one column 
for each of our variables, and the intersections of the rows 
and columns for different variables contain the correlation for 
those two variables. At the beginning of the chapter, we saw 
scatterplots presenting data for correlations between job 
satisfaction, well-being, burnout, and job performance. We can 
create a correlation matrix to quickly display the numerical 
values of each. Such a matrix is shown below. 

Satisfaction Well-Being Burnout Performance 

Satisfaction 1.00 

Well-Being 0.41 1.00 

Burnout -0.54 -0.87 1.00 

Performance 0.08 0.21 -0.33 1.00 

Table 5. Example Correlation Matrix 
Notice that there are values of 1.00 where each row and 
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column of the same variable intersect. This is because a 
variable correlates perfectly with itself, so the value is always 
exactly 1.00. Also notice that the upper cells are left blank and 
only the cells below the diagonal of 1s are filled in. This is 
because correlation matrices are symmetrical: they have the 
same values above the diagonal as below it. Filling in both 
sides would provide redundant information and make it a bit 
harder to read the matrix, so we leave the upper triangle blank. 
Correlation matrices are a very condensed way of presenting 
many results quickly, so they appear in almost all research 
studies that use continuous variables. Many matrices also 
include columns that show the variable means and standard 
deviations, as well as asterisks showing whether or not each 
correlation is statistically significant. 

Summary 

Value of the correlation coefficient (r) 

• The value of r is always between –1 and +1 
• The size of the correlation r indicates the strength of the 

linear relationship between x and y and values close to –1 
or to +1 indicate a stronger linear relationship between x 
and y. 

◦ o r = 1 represents a perfect positive correlation. A 
correlation of 1 indicates a perfect linear relationship. 

◦  r = –1 represents a perfect negative correlation. A 
correlation of -1 indicates a perfect negative 
relationship. 

◦ If r = 0 there is absolutely no linear relationship 
between x and y. A correlation of zero indicates no 
linear relationship. 

Direction of the correlation coefficient (r) 
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• A positive value of r means that when x increases, y tends 
to increase and when x decreases, y tends to decrease 
(positive correlation). 

• A negative value of r means that when x increases, y tends 
to decrease and when x decreases, y tends to increase 
(negative correlation). 

If two variables have a significant linear correlation we normally 
might assume that there is something causing them to go 
together. However, we cannot know the direction of causality 
(what is causing what) just from the fact that the two variables 
are correlated. 

Consider this example, the relationship between doing 
exciting activities with your significant other and satisfaction 
with the relationship. There are three possible directions of 
causality for these two variables: 

• X could be causing Y 
• Y could be causing X 
• Some third factor could be causing both X and Y 

These three possible directions of causality are shown in the 
figure below (b). 

• Correlation is a relationship that has established that X 
and Y are related – if we know one then the other can be 
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predicted but we cannot conclude that one variable 
causes the other. 

• Causation is a relationship for which we have to establish 
that X causes Y. To establish causation an experiment 
must demonstrate that Y can be controlled by presenting 
or removing X. 

◦ For example, when we apply heat (X) the temperature 
of water (Y)increases and when we remove heat (X) 
the temperature of water (Y) decreases. 

Learning Objectives 

Having read this chapter, a student should be able to: 

• Describe the concept of the correlation coefficient and its 
interpretation 

• Understand Pearson correlation as a descriptive statistic 
and test statistic 

• Compute the Pearson correlation 
• Identify type of correlation based on the data (Pearson vs 

Spearman) 
• Describe the effect of outlier data points and how to 

address them. 
• Describe the potential causal influences that can give rise 

to an observed correlation. 

 

Exercises – Ch. 16 

1. What does a correlation assess? 
2. What are the three characteristics of a correlation 

coefficient? Why is it important to visualize correlational 
data in a scatterplot before performing analyses? 
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3. What sort of relation is displayed in the scatterplot below? 

4. What is the direction and magnitude of the following 
correlation coefficients? 

1.  -0.81 
2. 0.40 
3. 0.15 
4. -0.08 
5. 0.29 

5. Create a scatterplot from the following data: 
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Hours Studying Overall Class Performance 

0.62 2.02 

1.50 4.62 

0.34 2.60 

0.97 1.59 

3.54 4.67 

0.69 2.52 

1.53 2.28 

0.32 1.68 

1.94 2.50 

1.25 4.04 

1.42 2.63 

3.07 3.53 

3.99 3.90 

1.73 2.75 

1.29 2.95 

6. In the following correlation matrix, what is the relation 
(number, direction, and magnitude) between… 

• Pay and Satisfaction 
• Stress and Health 

Workplace Pay Satisfaction Stress Health 

Pay 1.00 

Satisfaction .68 1.00 

Stress 0.02 -0.23 1.00 

Health 0.05 0.15 -0.48 1.00 

Chapter 16: Correlations  |  503



7. A researcher collects data from 100 people to assess whether 
there is any relation between level of education and levels of 
civic engagement. The researcher finds the following 
descriptive values: ̅X = 4.02, sx = 1.15, Y̅ = 15.92, sy = 5.01, SSX 

= 130.93, SSY = 2484.91, SP = 159.39. Test for a significant relation 
using the four step hypothesis testing procedure. 

Answers to Odd- Numbered Exercises – Ch. 
16 

1. Correlations assess the linear relation between two 
continuous variables 
3. Strong, positive, linear relation 

5. Your scatterplot should look similar to this: 
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7. Step 1: H0: ρ = 0, “There is no relation between time spent 
studying and overall performance in class”, HA: ρ > 0, “There 
is a positive relation between time spent studying and overall 
performance in class.” 

Step 2: df = 15 – 2 = 13, α = 0.05, 1-tailed test, r* = 0.441. 
Step 3: Using the Sum of Products table, you should find: ̅X 

= 1.61, SSX = 17.44, ̅Y = 2.95, SSY =13.60, SP = 10.06, r = 0.65. 
Step 4: Obtained statistic is greater than critical value, reject 
H0. There is a statistically significant, strong, positive relation 
between time spent studying and performance in class, r(13) = 
0.65, p < .05. 
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Appendix:  conceptual calculations for anxiety and 
depression example. 

We will use X for depression and Y for anxiety to keep track 
of our data, but be aware that this choice is arbitrary and the 
math will work out the same if we decided to do the opposite. 
Our table is thus: 

X (X − ̅X) (X − ̅X)2 Y (Y − ̅Y) (Y − ̅Y)2 (X − ̅X)(Y − 

2.81 -0.35 0.12 3.54 -0.10 0.01 0.04 

1.96 -1.20 1.44 3.05 -0.59 0.35 0.71 

3.43 0.27 0.07 3.81 0.17 0.03 0.05 

3.40 0.24 0.06 3.43 -0.21 0.04 -0.05 

4.71 1.55 2.40 4.03 0.39 0.15 0.60 

1.80 -1.36 1.85 3.59 -0.05 0.00 0.07 

4.27 1.11 1.23 4.17 0.53 0.28 0.59 

3.68 0.52 0.27 3.46 -0.18 0.03 -0.09 

2.44 -0.72 0.52 3.19 -0.45 0.20 0.32 

3.13 -0.03 0.00 4.12 0.48 0.23 -0.01 
total total total total total total total (SP) 

31.63 0.03 7.97 36.39 -0.01 1.33 2.22 

The bottom row is the sum of each column. We can see from 
this that the sum of the X observations is 31.63, which makes 
the mean of the X variable ̅X = 3.16. The deviation scores for 
X sum to 0.03, which is very close to 0, given rounding error, so 
everything looks right so far. The next column is the squared 
deviations for X, so we can see that the sum of squares for X is 
SSX = 7.97. The same is true of the Y columns, with an average 
of ̅Y = 3.64, deviations that sum to zero within rounding error, 
and a sum of squares as SSY = 1.33. The final column is the 
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product of our deviation scores (NOT of our squared 
deviations), which gives us a sum of products of SP = 2.22. 

Our calculation before was r = .69,  difference due to rounding 
issues! 
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17.  Chapter 17: Linear 
Regression 

In chapter 14, we learned about ANOVA, which involves a new 
way a looking at how our data are structured and the 
inferences we can draw from that. In chapter 16, we learned 
about correlations, which analyze two continuous variables at 
the same time to see if they systematically relate in a linear 
fashion. In this chapter, we will combine these two techniques 
in an analysis called simple linear regression, or regression for 
short. Regression uses the technique of variance partitioning 
from ANOVA to more formally assess the types of relations 
looked at in correlations. Regression is the most general and 
most flexible analysis covered in this book, and we will only 
scratch the surface. 

A major practical application of statistical methods is making 
predictions. Psychologists often call this kind of prediction 
regression. Regression literally means going back or returning. 
We use the term regression here because the predicted score 
on the criterion variable is closer (in terms of standard deviation 
units) to the mean of the criterion variable compared to the 
distance from the value of the predictor variable to the mean 
of the predictor variable. So we can think of this in terms of 
the predicted value of the criterion variable regressing, or going 
back, toward the mean of the criterion variable. Again, the 
concepts in this chapter are directly related to correlation. This 
is because if two variables are correlated it means that we 
can predict one from the other. So if sleep the night before 
is correlated with happiness the next day, this means that we 
should be able, to some extent, predict how happy a person will 
be the next day from knowing how much sleep the person got 
the night before. The concepts in the chapter are also related 
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to ANOVA as the goal of regression is the same as the goal of 
ANOVA: to take what we know about one variable (X) and use it 
to explain our observed differences in another variable (Y) – we 
are just two continuous variables. 

Line of Best Fit 

In correlations, we referred to a linear trend in the data. That 
is, we assumed that there was a straight line we could draw 
through the middle of our scatterplot that would represent the 
relation between our two variables, X and Y. Regression involves 
solving for the equation of that line, which is called the Line of 
Best Fit. 
The line of best fit can be thought of as the central tendency 
of our scatterplot. The term “best fit” means that the line is as 
close to all points (with each point representing both variables 
for a single person) in the scatterplot as possible, with a 
balance of scores above and below the line. This is the same 
idea as the mean, which has an equal weighting of scores 
above and below it and is the best singular descriptor of all our 
data points for a single variable. 
We have already seen many scatterplots in chapters 3 and 16, 
so we know by now that no scatterplot has points that form a 
perfectly straight line. Because of this, when we put a straight 
line through a scatterplot, it will not touch all of the points, and 
it may not even touch any! This will result in some distance 
between the line and each of the points it is supposed to 
represent, just like a mean has some distance between it and 
all of the individual scores in the dataset. 

The distances between the line of best fit and each individual 
data point go by two different names that mean the same 
thing: errors and residuals. The term “error” in regression is 
closely aligned with the meaning of error in statistics (think 
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standard error or sampling error); it does not mean that we 
did anything wrong, it simply means that there was some 
discrepancy or difference between what our analysis produced 
and the true value we are trying to get at it. The term “residual” 
is new to our study of statistics, and it takes on a very similar 
meaning in regression to what it means in everyday parlance: 
there is something left over. In regression, what is “left over” 
– that is, what makes up the residual – is an imperfection in 
our ability to predict values of the Y variable using our line. 
This definition brings us to one of the primary purposes of 
regression and the line of best fit: predicting scores. 

Prediction 

The goal of regression is the same as the goal of ANOVA: to 
take what we know about one variable (X) and use it to explain 
our observed differences in another variable (Y). In ANOVA, we 
talked about – and tested for – group mean differences, but in 
regression we do not have groups for our explanatory variable; 
we have a continuous variable, like in correlation. Because of 
this, our vocabulary will be a little bit different, but the process, 
logic, and end result are all the same. 
In regression, we most frequently talk about prediction, 
specifically predicting our outcome variable Y from our 
explanatory variable X, and we use the line of best fit to make 
our predictions. Let’s take a look at the equation for the line, 
which is quite simple. 

Regression equation 
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Ŷ = a + bX 

The terms in the equation are defined as: 

Ŷ
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n
e 

b: the slope of the line 

X: the observed value of X for an 
individual person 

Additionally we have formulas for a and b: 

What this shows us is that we will use our known value of 
X for each person to predict the value of Y for that person. 
The predicted value, Ŷ, is called “y-hat” and is our best guess 
for what a person’s score on the outcome is. Notice also that 
the form of the equation is very similar to very simple linear 
equations that you have likely encountered before and has only 
two parameter estimates: an intercept (where the line crosses 
the Y-axis) and a slope (how steep – and the direction, positive 
or negative – the line is). These are parameter estimates 
because, like everything else in statistics, we are interested in 
approximating the true value of the relation in the population 
but can only ever estimate it using sample data. We will soon 
see that one of these parameters, the slope, is the focus of our 
hypothesis tests (the intercept is only there to make the math 
work out properly and is rarely interpretable). 
It is very important to point out that the Y values in the 
equations for a and b are our observed Y values in the dataset, 
NOT the predicted Y values (Ŷ) from our equation for the line 
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of best fit. Thus, we will have 3 values for each person: the 
observed value of X (X), the observed value of Y (Y), and the 
predicted value of Y (Ŷ). You may be asking why we would try 
to predict Y if we have an observed value of Y, and that is a 
very reasonable question. The answer has two explanations: 
first, we need to use known values of Y to calculate the 
parameter estimates in our equation, and we use the 
difference between our observed values and predicted values 
(Y – Ŷ) to see how accurate our equation is; second, we often 
use regression to create a predictive model that we can then 
use to predict values of Y for other people for whom we only 
have information on X. 

Applied examples for using regression 

Example 1: Businesses often have more applicants for 
a job than they have openings available, so they want 
to know who among the applicants is most likely to be 
the best employee. There are many criteria that can be 
used, but one is a personality test for 
conscientiousness, with the belief being that more 
conscientious (more responsible) employees are better 
than less conscientious employees. A business might 
give their employees a personality inventory to assess 
conscientiousness and existing performance data to 
look for a relation. In this example, we have known 
values of the predictor (X, conscientiousness) and 
outcome (Y, job performance), so we can estimate an 
equation for a line of best fit and see how accurately 
conscientious predicts job performance, then use this 

514  |  Chapter 17: Linear Regression



equation to predict future job performance of 
applicants based only on their known values of 
conscientiousness from personality inventories given 
during the application process. 

Example 2: Assume a researcher is interested in 
examining whether SAT scores can be an accurate 
predictor of college GPA. In this case, SAT scores would 
be the predictor variable or X and college GPA would 
be the criterion variable or Y. 

The key assessing whether a linear regression works well is the 
difference between our observed and known Y values and our 
predicted Ŷ values. As mentioned in passing above, we use 
subtraction to find the difference between them (Y – Ŷ) in the 
same way we use subtraction for deviation scores and sums 
of squares. The value (Y – Ŷ) is our residual, which, as defined 
above, is how close our line of best fit is to our actual values. We 
can visualize residuals to get a better sense of what they are by 
creating a scatterplot and overlaying a line of best fit on it, as 
shown in Figure 1. 
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Figure 1. Scatterplot with residuals 
In figure 1, the triangular dots represent observations from 
each person on both X and Y and the dashed bright red line is 
the line of best fit estimated by the equation Ŷ = a + bX. For 
every person in the dataset, the line represents their predicted 
score. The dark red bracket between the triangular dots and 
the predicted scores on the line of best fit are our residuals 
(they are only drawn for four observations for ease of viewing, 
but in reality there is one for every observation); you can see 
that some residuals are positive and some are negative, and 
that some are very large and some are very small. This means 
that some predictions are very accurate and some are very 
inaccurate, and the some predictions overestimated values 
and some underestimated values. Across the entire dataset, 
the line of best fit is the one that minimizes the total (sum) 
value of all residuals. That is, although predictions at an 
individual level might be somewhat inaccurate, across our full 
sample and (theoretically) in future samples our total amount 
of error is as small as possible. 

We call this property of the line of best fit the Least Squares 
Error Solution. This term means that the solution – or equation 
– of the line is the one that provides the smallest possible value 
of the squared errors (squared so that they can be summed, 
just like in standard deviation) relative to any other straight line 
we could draw through the data. 

Predicting Scores and Explaining Variance 

We have now seen that the purpose of regression is twofold: we 
want to predict scores based on our line and, as stated earlier, 
explain variance in our observed Y variable just like in ANOVA. 
These two purposes go hand in hand, and our ability to predict 
scores is literally our ability to explain variance. That is, if we 
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cannot account for the variance in Y based on X, then we have 
no reason to use X to predict future values of Y. 

We know that the overall variance in Y is a function of each 
score deviating from the mean of Y (as in our calculation of 
variance and standard deviation). So, just like the red brackets 
in figure 1 representing residuals, given as (Y – Ŷ), we can 
visualize the overall variance as each score’s distance from the 
overall mean of Y, given as (Y – ̅Y), our normal deviation score. 
This is shown in figure 2. 

Figure 2. Scatterplot with residuals and deviation scores. 
In figure 2, the solid blue line is the mean of Y, and the blue 
brackets are the deviation scores between our observed values 
of Y and the mean of Y. This represents the overall variance 
that we are trying to explain. Thus, the residuals and the 
deviation scores are the same type of idea: the distance 
between an observed score and a given line, either the line of 
best fit that gives predictions or the line representing the 
mean that serves as a baseline. The difference between these 
two values, which is the distance between the lines 
themselves, is our model’s ability to predict scores above and 
beyond the baseline mean; that is, it is our models ability to 
explain the variance we observe in Y based on values of X. If we 
have no ability to explain variance, then our line will be flat (the 
slope will be 0.00) and will be the same as the line 
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representing the mean, and the distance between the lines 
will be 0.00 as well. 

We now have three pieces of information: the distance from 
the observed score to the mean, the distance from the 
observed score to the prediction line, and the distance from 
the prediction line to the mean. These are our three pieces of 
information needed to test our hypotheses about regression 
and to calculate effect sizes. They are our three Sums of 
Squares, just like in ANOVA. Our distance from the observed 
score to the mean is the Sum of Squares Total, which we are 
trying to explain. Our distance from the observed score to the 
prediction line is our Sum of Squares Error, or residual, which 
we are trying to minimize. Our distance from the prediction 
line to the mean is our Sum of Squares Model, which is our 
observed effect and our ability to explain variance. Each of 
these will go into the ANOVA table to calculate our test statistic. 

ANOVA Table 

Our ANOVA table in regression follows the exact same format 
as it did for ANOVA (hence the name). Our top row is our 
observed effect, our middle row is our error, and our bottom 
row is our total. The columns take on the same interpretations 
as well: from left to right, we have our sums of squares, our 
degrees of freedom, our mean squares, and our F statistic. 

Source SS df MS F 

Model ∑(Ŷ − 
̅Y)2 1 SSM/dfM MSM/MSE 

Error ∑(Y − 
Ŷ)2 

n-2 SSE/dfE 

Total ∑(Y − 
̅Y)2 

n-1 
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As with ANOVA, getting the values for the SS column is a 
straightforward but somewhat arduous process. First, you take 
the raw scores of X and Y and calculate the means, variances, 
and covariance using the sum of products table introduced in 
our chapter on correlations. Next, you use the variance of X and 
the covariance of X and Y to calculate the slope of the line, b, 
the formula for which is given above. After that, you use the 
means and the slope to find the intercept, a, which is given 
alongside b. After that, you use the full prediction equation for 
the line of best fit to get predicted Y scores (Ŷ) for each person. 
Finally, you use the observed Y scores, predicted Y scores, and 
mean of Y to find the appropriate deviation scores for each 
person for each sum of squares source in the table and sum 
them to get the Sum of Squares Model, Sum of Squares Error, 
and Sum of Squares Total. As with ANOVA, you won’t be 
required to compute the SS values by hand, but you will need 
to know what they represent and how they fit together. The 
other columns in the ANOVA table are all familiar. The degrees 
of freedom column still has N – 1 for our total, but now we have 
N – 2 for our error degrees of freedom and 1 for our model 
degrees of freedom; this is because simple linear regression 
only has one predictor, so our degrees of freedom for the 
model is always 1 and does not change. The total degrees of 
freedom must still be the sum of the other two, so our degrees 
of freedom error will always be N – 2 for simple linear 
regression. The mean square columns are still the SS column 
divided by the df column, and the test statistic F is still the ratio 
of the mean squares. Based on this, it is now explicitly clear that 
not only do regression and ANOVA have the same goal but they 
are, in fact, the same analysis entirely. The only difference is the 
type of data we feed into the predictor side of the equations: 
continuous for regression and categorical for ANOVA. 
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Hypothesis Testing in Regression 

Regression, like all other analyses, will test a null hypothesis in 
our data. In regression, we are interested in predicting Y scores 
and explaining variance using a line, the slope of which is what 
allows us to get closer to our observed scores than the mean 
of Y can. Thus, our hypotheses concern the slope of the line, 
which is estimated in the prediction equation by b. Specifically, 
we want to test that the slope is not zero: 

H0: There is no explanatory 
relation between our variables, 

H0: ß = 0 
HA: There is an explanatory 

relation between our variables, 
HA: ß ≠ 0 

or if directional – specify direction for relation (positive or 
negative), HA: ß > 0, HA: ß < 0 

A non-zero slope indicates that we can explain values in Y 
based on X and therefore predict future values of Y based on 
X. Our alternative hypotheses are analogous to those in 
correlation: positive relations have values above zero, negative 
relations have values below zero, and two-tailed tests are 
possible. Just like ANOVA, we will test the significance of this 
relation using the F statistic calculated in our ANOVA table 
compared to a critical value from the F distribution table. Let’s 
take a look at an example and regression in action. 

Example: Happiness and Well-Being 

Researchers are interested in explaining differences in how 
happy people are based on how healthy people are. They 
gather data on each of these variables from 18 people and fit a 
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linear regression model to explain the variance. We will follow 
the four-step hypothesis testing procedure to see if there is a 
relation between these variables that is statistically significant. 

Step 1: State the Hypotheses 

The null hypothesis in regression states that 
there is no relation between our variables. The 
alternative states that there is a relation, but 
because our research description did not 
explicitly state a direction of the relation, we will 
use a non- directional hypothesis. 

H0: There is no explanatory relation between 
health and happiness, H0: ß = 0 

HA: There is an explanatory relation between 
health and happiness, HA: ß ≠ 0 

Step 2: Find the Critical Value 

Because regression and ANOVA are the same analysis, our 
critical value for regression will come from the same place: 
the F distribution table, which uses two types of degrees of 
freedom. We saw above that the degrees of freedom for our 
numerator – the Model line – is always 1 in simple linear 
regression, and that the denominator degrees of freedom – 
from the Error line – is N – 2. In this instance, we have 18 people 
so our degrees of freedom for the denominator is 16. Going to 
our F table, we find that the appropriate critical value for 1 and 
16 degrees of freedom is F* = 4.49, shown below in figure 3. 
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Figure 3. Critical value from F distribution table 

Step 3: Calculate the Test Statistic 

The process of calculating the test statistic for regression first 
involves computing the parameter estimates for the line of 
best fit. To do this, we first calculate the means, standard 
deviations, and sum of products for our X and Y variables, as 
shown below. 
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X (X − ̅X) (X − ̅X)2 Y (Y − ̅Y) (Y − ̅Y)2 (X − ̅X)(Y − 

17.65 -2.13 4.53 10.36 -7.10 50.37 15.10 

16.99 -2.79 7.80 16.38 -1.08 1.16 3.01 

18.30 -1.48 2.18 15.23 -2.23 4.97 3.29 

18.28 -1.50 2.25 14.26 -3.19 10.18 4.79 

21.89 2.11 4.47 17.71 0.26 0.07 0.55 

22.61 2.83 8.01 16.47 -0.98 0.97 -2.79 

17.42 -2.36 5.57 16.89 -0.56 0.32 1.33 

20.35 0.57 0.32 18.74 1.29 1.66 0.73 

18.89 -0.89 0.79 21.96 4.50 20.26 -4.00 

18.63 -1.15 1.32 17.57 0.11 0.01 -0.13 

19.67 -0.11 0.01 18.12 0.66 0.44 -0.08 

18.39 -1.39 1.94 12.08 -5.37 28.87 7.48 

22.48 2.71 7.32 17.11 -0.34 0.12 -0.93 

23.25 3.47 12.07 21.66 4.21 17.73 14.63 

19.91 0.13 0.02 17.86 0.40 0.16 0.05 

18.21 -1.57 2.45 18.49 1.03 1.07 -1.62 

23.65 3.87 14.99 22.13 4.67 21.82 18.08 

19.45 -0.33 0.11 21.17 3.72 13.82 -1.22 
totals/∑ 

356.02 0.00 76.14 314.18 0.00 173.99 58.29 

From the raw data in our X and Y columns, we find that the 
means are ̅X = 19.78 and ̅Y = 17.45. The deviation scores 
for each variable sum to zero, so all is well there. The sums of 
squares for X and Y ultimately lead us to standard deviations 
of Sx = 2.12 and Sy = 3.20. Finally, our sum of products is 58.29, 
which gives us a covariance of covXY = 3.43, so we know our 
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relation will be positive. This is all the information we need for 
our equations for the line of best. 
First, we must calculate the slope of the line: 
b = SSx/SP = 58.29/76.14 = 0.77 
This means that as X changes by 1 unit, Y will change by 0.77. 
In terms of our problem, as health increases by 1, happiness 
goes up by 0.77, which is a positive relation. Next, we use the 
slope, along with the means of each variable, to compute the 
intercept: 
a = ̅Y − b̅X = ̅ ̅ 17.45 − (0.77 ∗ 19.78) = 17.45 − 15.03 = 2.42 
For this particular problem (and most regressions), the 
intercept is not an important or interpretable value, so we will 
not read into it further. 
Now that we have all of our parameters estimated, we can give 
the full equation for our line of best fit: 

Ŷ = 2.42 + 0.77X 
We can plot this relation in a scatterplot and overlay our line 

onto it, as shown in figure 4. 

Figure 4. Health and happiness data and line. 
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We can use the line equation to find predicted values for each 
observation and use them to calculate our sums of squares 
model and error, but this is tedious to do by hand, so we will let 
the computer software do the heavy lifting in that column of 
our ANOVA table: 

Source SS df MS F 

Model 44.62 

Error 129.37 

Total 

Now that we have these, we can fill in the rest of the ANOVA 
table. We already found our degrees of freedom in Step 2: 

Source SS df MS F 

Model 44.62 1 

Error 129.37 16 

Total 

Our total line is always the sum of the other two lines, giving us: 

Source SS df MS F 

Model 44.62 1 

Error 129.37 16 

Total 173.99 17 

Our mean squares column is only calculated for the model and 
error lines and is always our SS divided by our df, which is: 
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Source SS df MS F 

Model 44.62 1 44.62 

Error 129.37 16 8.09 

Total 173.99 17 

Finally, our F statistic is the ratio of the mean squares: 

Source SS df MS F 

Model 44.62 1 44.62 5.52 

Error 129.37 16 8.09 

Total 173.99 17 

This gives us an obtained F statistic of 5.52, which we will now 
use to test our hypothesis. 

Step 4: Make the Decision 

We now have everything we need to make our final decision. 
Our obtained test statistic was F = 5.52 and our critical value 
was F* = 4.49. Since our obtained test statistic is greater than 
our critical value, we can reject the null hypothesis. 

Reject H0. Based on our sample of 18 people, we can 
predict levels of happiness based on how healthy 
someone is, F(1,16) = 5.52, p < .05. 

Effect Size 

We know that, because we rejected the null hypothesis, we 
should calculate an effect size. In regression, our effect size is 
variance explained, just like it was in ANOVA. Instead of using 
η2 to represent this, we instead us R2, as we saw in correlation 
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(yet more evidence that all of these are the same analysis). 

From the example above, we get R2 = .26. We are explaining 
26% of the variance in happiness based on health, which is a 
large effect size (R2 uses the same effect size cutoffs as η2). 

Accuracy in Prediction 

We found a large, statistically significant relation between our 
variables, which is what we hoped for. However, if we want to 
use our estimated line of best fit for future prediction, we will 
also want to know how precise or accurate our predicted values 
are. What we want to know is the average distance from our 
predictions to our actual observed values, or the average size of 
the residual (Y − Ŷ). The average size of the residual is known by 
a specific name: the standard error of the estimate s(Y− Ŷ). The 
formula is almost identical to our standard deviation formula, 
and it follows the same logic. For our example, s(Y− Ŷ) = 2.84. So 
on average, our predictions are just under 3 points away from 
our actual values. There are no specific cutoffs or guidelines for 
how big our standard error of the estimate can or should be; it 
is highly dependent on both our sample size and the scale of 
our original Y variable, so expert judgment should be used. In 
this case, the estimate is not that far off and can be considered 
reasonably precise. 

Quick recap of regression (without the 
math) 

Two variables of regression 
1.        Predictor (X) 
2.        Criterion (Y) 
With correlation it did not matter which variable was the 
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predictor variable or the criterion variable. But with prediction 
we have to decide which variable is being predicted from and 
which variable is being predicted. The variable being predicted 
from is called the predictor variable. The variable being 
predicted is called the criterion variable. In equations, the 
predictor variable is usually labeled X, and the criterion is 
labeled Y. 

The Linear Prediction Rule: Ideally we want to make a 
prediction rule that is both simple and depends on every case 
for each prediction. In a linear prediction rule the formal name 
for the baseline number is the regression constant or just 
constant. It has the name constant because it is a fixed value 
that we always add in to the prediction. 

The number we multiplied by the person’s score on the 
predictor variable, b, is called the regression coefficient 
because a “coefficient” is a number we multiply by something. 

Let’s revisit example 2, predicting college GPA from SAT 
scores. For our SAT and GPA example, the rule might be “to 
predict a person’s graduating GPA, start with .3 and at the 
result of multiplying .004 by the person’s SAT scores”. So, the 
baseline number (a) would be .3 and the predictor value (b) is 
.004. If a person had an SAT of 600 we would predict the person 
would graduate with a GPA of 2.7. This idea is known as the 
linear prediction rule. Lows go with lows and highs with highs, 
or lows with highs and highs with lows. 

Criterion Variable (Ŷ) 

The variable we are predicting in a regression equation is called 
the criterion variable. It is labeled as Ŷ. The mark above Y 
indicates that this variable is a predicted variable and is 
dependent on the value of X. 
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Slope of the Regression Line (b) 

The steepness of the angle of the regression line, called its 
slope, is the amount that the line moves up for every unit it is 
moved across. In our SAT example the line moves up .004 on 
the GPA scale for every additional point on the SAT. In fact, the 
slope of the line is exactly b, the regression coefficient. 

Intercept of the Regression Line (a) 

The point at which the regression line crosses or intersects the 
vertical axis is called the intercept. 

• The intercept is the predicted score on the criterion 
variable when the score on the predictor variable is 0. It 
turns out that the intercept is the same as the regression 
constant. 

• The reason this works is the regression constant is the 
number we always add in – a kind of baseline number, the 
number we start with. 

• It is reasonable that the best baseline number would be 
the number we predict from a predictor score of 0. 

In the SAT example the line crosses the vertical axis app .3. That 
is, when a person has an SAT score of zero, they are predicted 
to have a college GPA .3. 
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Linear regression standardized coefficient (β) 

Standardized regression coefficient (β): 

                                                 
                                                This formula has the effect 
of changing the regular (unstandardized) regression 
coefficient (b), to a standardized regression 
coefficient (β) that shows the relationship between 
the predictor and criterion variables in terms of 
standard deviation units. 

 

Multiple Regression and Other Extensions 

Simple linear regression as presented here is only a stepping 
stone towards an entire field of research and application. 
Regression is an incredibly flexible and powerful tool, and the 
extensions and variations on it are far beyond the scope of this 
chapter (indeed, even entire books struggle to accommodate 
all possible applications of the simple principles laid out here). 
The next step in regression is to study multiple regression, 
which uses multiple X variables as predictors for a single Y 
variable at the same time. The math of multiple regression 
is very complex but the logic is the same: we are trying to 
use variables that are statistically significantly related to our 
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outcome to explain the variance we observe in that outcome. 
Other forms of regression include curvilinear models that can 
explain curves in the data rather than the straight lines used 
here, as well as moderation models that change the relation 
between two variables based on levels of a third. The 
possibilities are truly endless and offer a lifetime of discovery. 

Learning Objectives 

Having read this chapter, a student should be able to: 

• Explain the concept of a linear equation, including slope 
and intercept 

• Explain how regression is related to correlation and 
ANOVA 

• Understand the concept of least-square solution 
• Understand the concept of multiple regression 

Exercises – Ch. 17 

1. How are ANOVA and linear regression similar? How are 
they different? 

2. What is a residual? 
3. How are correlation and regression similar? How are they 

different? 
4. What are the two parameters of the line of best fit, and 

what do they represent? 
5. What is our criteria for finding the line of best fit? 
6. Fill out the rest of the ANOVA tables below for simple 

linear regressions: a. 
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Source SS df MS F 

Model 34.21  1  34.21 

Error 

Total 66.12 54 

7. In chapter 15, we found a statistically significant correlation 
between overall performance in class and how much time 
someone studied. Use the summary statistics calculated in 
that problem (provided here) to compute a line of best fit 
predicting success from study times: ̅X = 1.61, sX = 1.12, ̅Y = 
2.95, sY = 0.99, r = 0.65. 

8. Using the line of best fit equation created in problem 7, 
predict the scores for how successful people will be based on 
how much they study: 

a. X = 1.20 
b. X = 3.33 
c. X = 0.71 
d. X = 4.00 

9. You have become suspicious that the draft rankings of your 
fantasy football league have no predictive value for how teams 
place at the end of the season. You go back to historical league 
data and find rankings of teams after the draft and at the 
end of the season (below) to test for a statistically significant 
predictive relation. Assume SSM = 2.65 and SSE = 337.35 
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Draft Projection Final Rankings 

1 14 

2 6 

3 8 

4 13 

5 2 

6 15 

7 4 

8 10 

9 11 

10 16 

11 9 

12 7 

13 14 

14 12 

15 1 

16 5 

10. You have summary data for two variables: how extroverted 
some is (X) and how often someone volunteers (Y). Using these 
values, calculate the line of best fit predicting volunteering 
from extroversion then test for a statistically significant relation 
using the hypothesis testing procedure: ̅X = 12.58, sX =4.65, ̅Y 
= 7.44, sY = 2.12, r = 0.34, N = 67, SSM = 19.79, SSE = 215.77. 
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Answers to Odd- Numbered Exercises – Ch. 
17 

1. ANOVA and simple linear regression both take the total 
observed variance and partition it into pieces that we can 
explain and cannot explain and use the ratio of those pieces to 
test for significant relations. They are different in that ANOVA 
uses a categorical variable as a predictor whereas linear 
regression uses a continuous variable. 
3. Correlation and regression both involve taking two 
continuous variables and finding a linear relation between 
them. Correlations find a standardized value describing the 
direction and magnitude of the relation whereas regression 
finds the line of best fit and uses it to partition and explain 
variance. 
5. Least Squares Error Solution; the line that minimizes the 
total amount of residual error in the dataset. 
7. b = r*(sy/sx) = 0.65*(0.99/1.12) = 0.72; a = ̅Y – b̅X = 2.95 – 
(0.72*1.61) =1.79; Ŷ = 1.79 + 0.72X 
9. Step 1: H0: β = 0 “There is no predictive relation between 
draft rankings and final rankings in fantasy football,” HA: β ≠ 0, 
“There is a predictive relation between draft rankings and final 
rankings in fantasy football.” 
Step 2: Our model will have 1 (based on the number of 
predictors) and 14 (based on how many observations we have) 
degrees of freedom, giving us a critical value of F* = 4.60. 
Step 3: Using the sum of products table, we find : ̅X = 8.50, 
̅Y = 8.50, SSX = 339.86, SP = 29.99, giving us a line of best fit of: 
b = 29.99/339.86 = 0.09; a = 8.50 – 0.09*8.50 = 7.74; Ŷ = 7.74 + 
0.09X. 

Our given SS values and our df from step 2 allow us to fill in the 
ANOVA table: 
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Source SS df MS F 

Model 2.65 1 2.65 0.11 

Error 337.35 14 24.10 

Total 339.86 15 

Step 4: Our obtained value was smaller than our critical value, 
so we fail to reject the null hypothesis. There is no evidence to 
suggest that draft rankings have any predictive value for final 
fantasy football rankings, F(1,14) = 0.11, p > .05 
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18.  Chapter 18. 
Chi-square 

We come at last to our final statistic: chi-square (χ2). This test is 
a special form of analysis called a non-parametric test, so the 
structure of it will look a little bit different from what we have 
done so far. However, the logic of hypothesis testing remains 
unchanged. The purpose of chi-square is to understand the 
frequency distribution of a single categorical variable or find 
a relation between two categorical variables, which is a 
frequently very useful way to look at our data. 

Categories and Frequency Tables 

Our data for the χ2 test are categorical, specifically nominal, 
variables. Recall from unit 1 that nominal variables have no 
specified order and can only be described by their names and 
the frequencies with which they occur in the dataset. Thus, 
unlike our other variables that we have tested, we cannot 
describe our data for the χ2 test using means and standard 
deviations. Instead, we will use frequencies tables. 

Cat Dog Other Total 

Observed 14 17 5 36 

Expected 12 12 12 36 

Table 1. Pet Preferences 
Table 1 gives an example of a frequency table used for a χ2 

test. The columns represent the different categories within our 
single variable, which in this example is pet preference. The 
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χ2 test can assess as few as two categories, and there is no 
technical upper limit on how many categories can be included 
in our variable, although, as with ANOVA, having too many 
categories makes our computations long and our 
interpretation difficult. The final column in the table is the total 
number of observations, or N. The χ2 test assumes that each 
observation comes from only one person and that each person 
will provide only one observation, so our total observations will 
always equal our sample size. 

There are two rows in this table. The first row gives the 
observed frequencies of each category from our dataset; in 
this example, 14 people reported liking preferring cats as pets, 
17 people reported preferring dogs, and 5 people reported a 
different animal. The second row gives expected values; 
expected values are what would be found if each category had 
equal representation. 

The calculation for an expected value is: 

E = N / C 

Where N is the total number of people in our 
sample and C is the number of categories in our 
variable (also the number of columns in our table). 

The expected values correspond to the null 
hypothesis for χ2 tests: equal representation of 
categories. Our first of two χ2 tests, the Goodness-of-
Fit test, will assess how well our data lines up with, or 
deviates from, this assumption. 

Chapter 18. Chi-square  |  537



Goodness-of-Fit 

The first of our two χ2 tests assesses one categorical variable 
against a null hypothesis of equally sized frequencies. Equal 
frequency distributions are what we would expect to get if 
categorization was completely random. We could, in theory, 
also test against a specific distribution of category sizes if we 
have a good reason to (e.g. we have a solid foundation of how 
the regular population is distributed), but this is less common, 
so we will not deal with it in this text. 

Hypotheses 

All χ2 tests, including the goodness-of-fit test, are non-
parametric. This means that there is no population parameter 
we are estimating or testing against; we are working only with 
our sample data. Because of this, there are no mathematical 
statements for χ2 hypotheses. This should make sense because 
the mathematical hypothesis statements were always about 
population parameters (e.g. μ), so if we are non-parametric, 
we have no parameters and therefore no mathematical 
statements. 

We do, however, still state our hypotheses verbally. For 
goodness-of-fit χ2 tests, our null hypothesis is that there is an 
equal number of observations in each category. That is, there 
is no difference between the categories in how prevalent they 
are. Our alternative hypothesis says that the categories do 
differ in their frequency. We do not have specific directions 
or one-tailed tests for χ2, matching our lack of mathematical 
statement. 
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Degrees of Freedom and the χ2 table 

Our degrees of freedom for the χ2 test are based on the 
number of categories we have in our variable, not on the 
number of people or observations like it was for our other tests. 
Luckily, they are still as simple to calculate. 

degrees of freedom for χ2 Goodness of fit             
                                                                                                   

                           df = C – 1 

So for our pet preference example, we have 3 categories, so we 
have 2 degrees of freedom. Our degrees of freedom, along with 
our significance level (still defaulted to α = 0.05) are used to 
find our critical values in the χ2 table, which is shown in figure 
1. Because we do not have directional hypotheses for χ2 tests, 
we do not need to differentiate between critical values for 1- 
or 2-tailed tests. In fact, just like our F tests for regression and 
ANOVA, all χ2 tests are 1-tailed tests. 
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Figure 1. First 10 rows of the χ2 table 

χ2 Statistic 

The calculations for our test statistic in χ2 tests combine our 
information from our observed frequencies (O) and our 
expected frequencies (E) for each level of our categorical 
variable. For each cell (category) we find the difference 
between the observed and expected values, square them, and 
divide by the expected values. We then sum this value across 
cells for our test statistic. 

χ2                                                                                                  
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For our pet preference data, we would have: 

Notice that, for each cell’s calculation, the expected value in 
the numerator and the expected value in the denominator are 
the same value. Let’s now take a look at an example from start 
to finish. 

Goodness-of-Fit Example: Pineapple on Pizza 

There is a very passionate and on-going debate on 
whether or not pineapple should go on pizza. Being 
the objective, rational data analysts that we are, we will 
collect empirical data to see if we can settle this debate 
once and for all. We gather data from a group of adults 
asking for a simple Yes/No answer. 

Step 1: State the Hypotheses 
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We start, as always, with our hypotheses. Our null 
hypothesis of no difference will state that an equal 
number of people will say they do or do not like 
pineapple on pizza, and our alternative will be that one 
side wins out over the other: 

H0: An equal number of people do and 
do not like pizza. 

HA: A significant majority of people will 
agree one way or another 

Step 2: Find the Critical Value 

To avoid any potential bias in this crucial analysis, we 
will leave α at its typical level. We have two options in 
our data (Yes or No), which will give us two categories. 
Based on this, we will have 1 degree of freedom. From 
our χ2 table, we find a critical value of 3.84. 

Step 3: Calculate the Test Statistic 

The results of the data collection are presented in 
table 2. We had data from 45 people in all and 2 
categories, so our expected values are E = 45/2 = 22.50. 

Yes No Total 

Observed 26 19 45 

Expected 22.50 22.50 45 

We can use these to calculate our χ2 statistic: 
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Step 4: Make the Decision 

Our observed test statistic had a value of 1.08 and our 
critical value was 3.84. Our test statistic was smaller 
than our critical value, so we fail to reject the null 
hypothesis, and the debate rages on. 

Goodness-of-Fit Example 2: Favorite candy 

We can also use goodness of fit to determine if we 
see differences in people’s selection of favorite candy. 
To keep it simple, we had 3 categories to select from: 
chocolate, licorice, and bubblegum. We gathered data 
from a group of adults to select from the three options 
which was the favorite.Step 1: State the Hypotheses 

Our null hypothesis of no difference will state that an 
equal number of people select favorite candy, and our 
alternative will be that one type of candy is more 
popular: 

H0: The proportion of each type of candy is 
equal. People have evenly distributed candy 
preference among our 3 choices. 
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HA: The proportion of each type of candy is not 
equal.  There is an unequal distribution for candy 
preference. 

Step 2: Find the Critical Value 

To avoid any potential bias in this crucial analysis, we 
will leave α at its typical level. We have three options for 
favorite candy. Based on this, we will have 2 degree of 
freedom. From our χ2 table, we find a critical value of 
5.99. 

Step 3: Calculate Statistic 

The results of the data collection are presented in 
table 3. We had data from 100 people in all and 3 
categories, so our expected values are E = 100/3 = 
33.333. 

Candy Type Count Expected (O

chocolate 30 33.333 

licorice 33 33.333 

gumball 37 33.333 13.

Table 3 Observed and expected counts for 
candy data 

We can use these to calculate our χ2 statistic:χ2 = 11.11/
33.33 + 0.11/33.33 + 13.44/33.33 =  0.333 + 0.003 + 0.403 = 
0.739 

Step 4: Make the Decision 

For the candy example, the observed counts of 
candies are not particularly surprising based on the 
proportions printed on the bag of candy, and we would 
not reject the null hypothesis of equal proportions. 
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Contingency Tables for Two 
Variables 

The goodness-of-fit test is a useful tool for assessing a single 
categorical variable. However, what is more common is 
wanting to know if two categorical variables are related to one 
another. This type of analysis is similar to a correlation, the only 
difference being that we are working with nominal data, 
which violates the assumptions of traditional correlation 
coefficients. This is where the χ2 test for independence comes 
in handy. 
As noted above, our only description for nominal data is 
frequency, so we will again present our observations in a 
frequency table. When we have two categorical variables, our 
frequency table is crossed. That is, each combination of levels 
from each categorical variable are presented. This type of 
frequency table is called a contingency table because it 
shows the frequency of each category in one variable, 
contingent upon the specific level of the other variable. 
An example contingency table is shown in table 3, which 
displays whether or not 168 college students watched college 
sports growing up (Yes/No) and whether the students’ final 
choice of which college to attend was influenced by the 
college’s sports teams (Yes – Primary, Yes – Somewhat, No): 

College Sports 
Affected Decision 

Primary Somewhat No Total 

Watched 
Yes 47 26 14 87 

No 21 23 37 81 

Total 68 49 51 168 
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Table 3. Contingency table of college sports and decision 
making 
In contrast to the frequency table for our goodness-of-fit 

test, our contingency table does not contain expected values, 
only observed data. Within our table, wherever our rows and 
columns cross, we have a cell. A cell contains the frequency 
of observing it’s corresponding specific levels of each variable 
at the same time. The top left cell in table 3 shows us that 47 
people in our study watched college sports as a child AND had 
college sports as their primary deciding factor in which college 
to attend. 

Cells are numbered based on which row they are in (rows are 
numbered top to bottom) and which column they are in 
(columns are numbered left to right). We always name the 
cell using (R,C), with the row first and the column second. A 
quick and easy way to remember the order is that R/C Cola 
exists but C/R Cola does not. Based on this convention, the top 
left cell containing our 47 participants who watched college 
sports as a child and had sports as a primary criteria is cell (1,1). 
Next to it, which has 26 people who watched college sports 
as a child but had sports only somewhat affect their decision, 
is cell (1,2), and so on. We only number the cells where our 
categories cross. We do not number our total cells, which have 
their own special name: marginal values. Marginal values are 
the total values for a single category of one variable, added up 
across levels of the other variable. In table 3, these marginal 
values have been italicized for ease of explanation, though this 
is not normally the case. We can see that, in total, 87 of our 
participants (47+26+14) watched college sports growing up and 
81 (21+23+37) did not. The total of these two marginal values 
is 168, the total number of people in our study. Likewise, 68 
people used sports as a primary criteria for deciding which 
college to attend, 50 considered it somewhat, and 50 did not 
use it as criteria at all. The total of these marginal values is also 
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168, our total number of people. The marginal values for rows 
and columns will always both add up to the total number of 
participants, N, in the study. If they do not, then a calculation 
error was made and you must go back and check your work. 

Expected Values of Contingency Tables 

Our expected values for contingency tables are based on the 
same logic as they were for frequency tables, but now we must 
incorporate information about how frequently each row and 
column was observed (the marginal values) and how many 
people were in the sample overall (N) to find what random 
chance would have made the frequencies out to be. 

Expected values formula       

The subscripts n(r) is the count for the row and 
n(c) the count for the column, respectively, 
correspond to the cell we are calculating the 
expected frequency for, and n is still the total 
sample size. 
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Example: Using the data from table 3, we can 
calculate the expected frequency for cell, E(1,1), the 
college sport watchers who used sports at their 
primary criteria, is 

E(1,1) = (87)(68) / 168 = 35.21 

College Sports 

Affected Decision 

Prim
ary 

Somew
hat 

N
o 

To
tal 

Watch
ed 

Ye
s 47 26 1

4 87 

No 21 23 3
7 81 

To
tal 68 49 5

1 
16

8 

We can follow the same math to find all the expected values 
for this table: 

Expected Values 
Affected Decision 

Primary Somewhat No Total 

Watched 
Yes 35.21 25.38 26.41 87 

No 32.79 23.62 24.59 81 

Total 68 49 51 

Table 4. Expected Values derived from Table 3. 
Notice that the marginal values still add up to the same totals 

as before. This is because the expected frequencies are just row 
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and column averages simultaneously. Our total N will also add 
up to the same value. 
The observed and expected frequencies can be used to 
calculate the same χ2statistic as we did for the goodness-of-
fit test. Before we get there, though, we should look at the 
hypotheses and degrees of freedom used for contingency 
tables. 

Test for Independence 

The χ2 test performed on contingency tables is known as the 
test for independence. In this analysis, we are looking to see if 
the values of each categorical variable (that is, the frequency 
of their levels) is related to or independent of the values of the 
other categorical variable. Because we are still doing a χ2 test, 
which is non- parametric, we still do not have mathematical 
versions of our hypotheses. The actual interpretations of the 
hypotheses are quite simple: the null hypothesis says that the 
variables are independent or not related, and alternative says 
that they are not independent or that they are related. For step 
2, the only change is degrees of formula. Our critical value will 
come from the same table that we used for the goodness-of- 
fit test, but our degrees of freedom will change. Because we 
now have rows and columns (instead of just columns) our new 
degrees of freedom. 

degrees of freedom for χ2 independence test       
                                                                                               

                          df = (R − 1)(C − 1) 
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For step 3, we still use the χ2 but we need to compute expected 
frequencies.  Step 4 is the same process.  Let’s see an example. 

Example: College Sports 

Using this set up and the data provided in table 3, 
let’s formally test for whether or not watching college 
sports as a child is related to using sports as a criteria 
for selecting a college to attend. We will follow the 
same 4 step procedure as we have since chapter 7. 

Step 1: Hypotheses 

Our null hypothesis of no difference will state that 
there is no relation between our variables, and our 
alternative will state that our variables are related (in 
other words there is a relationship):H0: College choice 
criteria is independent of college sports viewing as a 
child. HA: College choice criteria is related of college 
sports viewing as a child. 

Step 2: Criteria 
In our example: df = (2 − 1)(3 − 1) = 1 ∗ 2 = 2. Based on 

our 2 degrees of freedom, our critical value from using 
the table is 5.991.  You use the same critical value table 
as goodness of fit as it is only the degrees of freedom 
calculation that has changed. 

Step 3: Calculate the Test Statistic 
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The same formula for χ2 is used once again. We are 
using the expected frequency values from table 4: 

= 3.94 + 0.02 + 5.83 + 4.24 + 0.02 + 6.26 = 20.31 
Step 4: Decision 
The final decision for our test of independence is still 

based on our observed value (20.31) and our critical 
value (5.991). Because our observed value is greater 
than our critical value, we can reject the null 
hypothesis. 

Reject H0. Based on our 
data from 168 people, we can 
say that there is a statistically 
significant relation between 
whether or not someone 
watches college sports 
growing up and how much a 
college’s sports team factor in 
to that person’s decision on 
which college to attend, χ2(2) 
= 20.31, p < 0.05. 

Effect Size for χ2 

Like all other significance tests, χ2 tests – both goodness-of-fit 
and tests for independence – have effect sizes that can and 
should be calculated for statistically significant results. There 
are many options for which effect size to use, and the ultimate 
decision is based on the type of data, the structure of your 
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frequency or contingency table, and the types of conclusions 
you would like to draw. For the purpose of our introductory 
course, we will focus only on a single effect size that is simple 
and flexible: Cramer’s V. 
Cramer’s V is a type of correlation coefficient that can be 
computed on categorical data. 

Cramer’s V formula                                                          
                                                                                                   

                                               
                                                                                                   
                                                   For this calculation, k is 
the smaller value of either R (the number of rows) or 
C (the number of columns). The numerator is simply 
the test statistic (χ2) we calculate during step 3 of 
the hypothesis testing procedure. 

Example Continued: College Sports 

Effect size 
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For our example, we had 2 rows and 3 columns, so k = 
2: 

So the statistically significant relation between our 
variables was moderately strong examining the effect 
size table below. 

Like other statistic effect sizes there are range cut offs of small, 
medium, and large. The effect size ranges of Cramer’s V are in 
Table 6. 

small medium large 

df = 1 0.10 0.30 0.50 

df = 2 0.07 0.21 0.35 

df = 3 0.06 0.17 0.29 

Beyond Pearson’s Chi-Square Test: 
Standardized Residuals 

For a more applicable example, let’s take the question of 
whether a Black driver is more likely to be searched when 
they are pulled over by a police officer, compared to a white 
driver. The Stanford Open Policing Project 
(https://openpolicing.stanford.edu/) has studied this, and 
provides data that we can use to analyze the question. We will 
use the data from the State of Connecticut since they are fairly 
small and thus easier to analyze. 
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The standard way to represent data from a categorical 
analysis is through a contingency table, which presents the 
number or proportion of observations falling into each possible 
combination of values for each of the variables. Table 6 below 
shows the contingency table for the police search data. It can 
also be useful to look at the contingency table using 
proportions rather than raw numbers, since they are easier 
to compare visually, so we include both absolute and relative 
numbers here. 

searched Black White Black (relative) White (relative) 

FALSE 36244 239241 0.13 0.86 

TRUE 1219 3108 0.00 0.01 

Table 6. Contigency Table for Police Search Data 
The Pearson chi-squared test (discussed above) allows us to 

test whether observed frequencies are different from expected 
frequencies, so we need to determine what frequencies we 
would expect in each cell if searches and race were unrelated – 
which we can define as being independent. If we perform this 
test easily using our statistical software, X2 (1) = 828, p < .001. This 
shows that the observed data would be highly unlikely if there 
was truly no relationship between race and police searches, 
and thus we should reject the null hypothesis of independence. 

When we find a significant effect with the chi-squared test, this 
tells us that the data are unlikely under the null hypothesis, but 
it doesn’t tell us how the data differ. To get a deeper insight 
into how the data differ from what we would expect under the 
null hypothesis, we can examine the residuals from the model, 
which reflects the deviation of the data (i.e., the observed 
frequencies) from the model (i.e., the expected frequencies) in 
each cell. Rather than looking at the raw residuals (which will 
vary simply depending on the number of observations in the 
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data), it’s more common to look at the standardized residuals 
(sometimes called Pearson residuals). 

Table 7 shows these for the police stop data from X2 above. 
Remember that we examined the question of whether a Black 
driver is more likely to be searched when they are pulled over 
by a police officer, compared to a white driver. These 
standardized residuals can be interpreted as Z scores – in this 
case, we see that the number of searches for Black individuals 
are substantially higher than expected based on 
independence, and the number of searches for white 
individuals are substantially lower than expected. This provides 
us with the context that we need to interpret the significant 
chi-squared result. 

 

searched driver_race Standardized residuals 

FALSE Black -3.3 

TRUE Black 26.6 

FALSE White 1.3 

TRUE White -10.4 

Table 7. Summary of standardized residuals for police stop data 

Beware of Simpson’s paradox 

The contingency tables that represent summaries 
of large numbers of observations, but summaries 
can sometimes be misleading. Let’s take an 
example from baseball. The table below shows the 
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batting data (hits/at bats and batting average) for 
Derek Jeter and David Justice over the years 
1995-1997: 

Play
er 

19
95 

19
96 

19
97 

Combin
ed 

Der
ek 
Jeter 

12
/48 

.2
50 

18
3/
582 

.
314 

19
0/
654 

.2
91 

385/
1284 

.3
00 

Davi
d 
Justice 

10
4/
411 

.2
53 

4
5/
140 

.
321 

16
3/
495 

.3
29 312/1046 .2

98 

Table 9. Player Batting data for 2 baseball players 

If you look closely, you will see that something odd 
is going on: In each individual year Justice had a 
higher batting average than Jeter, but when we 
combine the data across all three years, Jeter’s 
average is actually higher than Justice’s! This is an 
example of a phenomenon known as Simpson’s 
paradox, in which a pattern that is present in a 
combined dataset may not be present in any of the 
subsets of the data. This occurs when there is 
another variable that may be changing across the 
different subsets – in this case, the number of at-
bats varies across years, with Justice batting many 
more times in 1995 (when batting averages were 
low). We refer to this as a lurking variable, and it’s 
always important to be attentive to such variables 
whenever one examines categorical data. 

 

Learning objectives 
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Having read the chapter, a student should be able to: 

• Identify when appropriate to run a chi-square test of 
goodness-of-fit or independence. 

• Describe the concept of a contingency table for 
categorical data. 

• Compute it for a given contingency table. 
• Complete hypothesis test for chi-square test of goodness-

of-fit and independence. 
• Compute and interpret effect size for chi-square chi-

square test of goodness-of-fit or independence. 
• Describe Simpson’s paradox and why it is important for 

categorical data analysis. 

Exercises – Ch. 18 

1. What does a frequency table display? What does a 
contingency table display? 

2. What does a goodness-of-fit test assess? 
3. How do expected frequencies relate to the null hypothesis? 
4. What does a test-for-independence assess? 
5. Compute the expected frequencies for the following 

contingency table: 

Category A Category B 

Category C 22 38 

Category D 16 14 

6. Test significance and find effect sizes (if significant) for the 
following tests: 

1. N = 19, R = 3, C = 2, χ2 (2) = 7.89, α = .05 
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2. N = 12, R = 2, C = 2, χ2 (1) = 3.12, α = .05 
3. N = 74, R = 3, C = 3, χ2 (4) = 28.41, α = .01 

7. You hear a lot of people claim that The Empire Strikes Back 
is the best movie in the original Star Wars trilogy, and you 
decide to collect some data to demonstrate this empirically 
(pun intended). You ask 48 people which of the original movies 
they liked best; 8 said A New Hope was their favorite, 23 said 
The Empire Strikes Back was their favorite, and 17 said Return 
of the Jedi was their favorite. Perform a chi-square test on these 
data at the .05 level of significance. 

8. A pizza company wants to know if people order the same 
number of different toppings. They look at how many 
pepperoni, sausage, and cheese pizzas were ordered in the last 
week; fill out the rest of the frequency table and test for a 
difference. 

Pepperoni Sausage Cheese Total 

Observed 320 275 251 

Expected 

9. A university administrator wants to know if there is a 
difference in proportions of students who go on to grad school 
across different majors. Use the data below to test whether 
there is a relation between college major and going to grad 
school. 
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Major 

Psychology Business Math 

Graduate 
Scho

ol 

Yes 32   8 36 

No 15  41 12 

10.A company you work for wants to make sure that they are 
not discriminating against anyone in their promotion process. 
You have been asked to look across gender to see if there are 
differences in promotion rate (i.e. if gender and promotion rate 
are independent or not). The following data should be assessed 
at the normal level of significance: 

Promoted in last two years? 

Yes No 

Gender 
Women 8 5 

Men 9 7 

Answers to Odd- Numbered Exercises – Ch. 
18 

1. Frequency tables display observed category frequencies and 
(sometimes) expected category frequencies for a single 
categorical variable. Contingency tables display the frequency 
of observing people in crossed category levels for two 
categorical variables, and (sometimes) the marginal totals of 
each variable level. 
3. Expected values are what we would observe if the 
proportion of categories was completely random (i.e. no 
consistent difference other than chance), which is the same 
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was what the null hypothesis predicts to be true. 
5. 

Observed Category A Category B Total 

Category C 22 38 60 

Category D 16 14 30 

Total 38 52 90 

Expected Category A Category B Total 

Category C ((60*38)/90) 
= 25.33 

((60*52)/90) 
= 34.67 60 

Category D ((30*38)/90) 
= 12.67 

((30*52)/90) 
= 17.33 30 

Total 38 52 90 

7. Step 1: H0: “There is no difference in preference for one 
movie”, HA: “There is a difference in how many people prefer 
one movie over the others.” Step 2: 3 categories (columns) gives 
df = 2, χ2

crit = 5.991. Step 3: Based on the given frequencies: 

New Hope Empire Jedi Total 

Observed 8 23 17 48 

Expected 16 16 16 

χ2 = 7.13. Step 4: Our obtained statistic is greater than our critical 
value, reject H0. Based on our sample of 48 people, there is a 
statistically significant difference in the proportion of people 
who prefer one Star Wars movie over the others, χ2(2) = 7.13, 
p < .05. Since this is a statistically significant result, we should 
calculate an effect size: Cramer’s V = √ 7.13/48(3−1) = 0.27, which 
is a moderate effect size. 
9.Step 1: H0: “There is no relation between college major and 
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going to grad school”, HA: “Going to grad school is related to 
college major.” Step 2: df = 2, χ2

crit = 5.991. Step 3: Based on the 
given frequencies: 

Expected Values 
Major 

Psychology Business Math 

Graduate 
School 

Yes 24.81 25.86 25.33 

No 22.19 23.14 22.67 

χ2 = 2.09+12.34+4.49+2.33+13.79+5.02 = 40.05. Step 4: Obtained 
statistic is greater than the critical value, reject H0. Based on 
our data, there is a statistically significant relation between 
college major and going to grad school, χ2(2) = 40.05, p < .05, 
Cramer’s V = 0.53, which is a large effect. 
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19.  Chapter 19. Doing 
reproducible research 

Most people think that science is a reliable way to answer 
questions about the world. When our physician prescribes a 
treatment we trust that it has been shown to be effective 
through research, and we have similar faith that the airplanes 
that we fly in aren’t going to fall from the sky. However, since 
2005 there has been an increasing concern that science may 
not always work as well as we have long thought that it does. 
In this chapter we will discuss these concerns about 
reproducibility of scientific research, and outline the steps that 
one can take to make sure that our statistical results are as 
reproducible as possible. 

How we think science should work 

Let’s say that we are interested in a research project on how 
children choose what to eat. This is a question that was asked 
in a study by the well-known eating researcher Brian Wansink 
and his colleagues in 2012. The standard (and, as we will see, 
somewhat naive) view goes something like this: 

• You start with a hypothesis 

◦ Branding with popular characters should cause 
children to choose “healthy” food more often 

• You collect some data 

◦ Offer children the choice between a cookie and an 
apple with either an Elmo-branded sticker or a control 
sticker, and record what they choose 

562  |  Chapter 19. Doing
reproducible research



• You do statistics to test the null hypothesis 

◦ “The preplanned comparison shows Elmo-branded 
apples were associated with an increase in a child’s 
selection of an apple over a cookie, from 20.7% to 
33.8% (χ2\chi^2=5.158; P=.02)” (Wansink, Just, and 
Payne 2012) 

• You make a conclusion based on the data 

◦ “This study suggests that the use of branding or 
appealing branded characters may benefit healthier 
foods more than they benefit indulgent, more highly 
processed foods. Just as attractive names have been 
shown to increase the selection of healthier foods in 
school lunchrooms, brands and cartoon characters 
could do the same with young children.”(Wansink, 
Just, and Payne 2012) 

How science (sometimes) actually works 

Brian Wansink is well known for his books on “Mindless Eating”, 
and his fee for corporate speaking engagements was at one 
point in the tens of thousands of dollars. In 2017, a set of 
researchers began to scrutinize some of his published research, 
starting with a set of papers about how much pizza people 
ate at a buffet. The researchers asked Wansink to share the 
data from the studies but he refused, so they dug into his 
published papers and found a large number of inconsistencies 
and statistical problems in the papers. The publicity around 
this analysis led a number of others to dig into Wansink’s past, 
including obtaining emails between Wansink and his 
collaborators. As reported by Stephanie Lee at Buzzfeed, these 
emails showed just how far Wansink’s actual research practices 
were from the naive model: 
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…back in September 2008, when Payne was looking 
over the data soon after it had been collected, he found 
no strong apples-and-Elmo link — at least not yet. … 
“I have attached some initial results of the kid study 
to this message for your report,” Payne wrote to his 
collaborators. “Do not despair. It looks like stickers on 
fruit may work (with a bit more wizardry).” … Wansink 
also acknowledged the paper was weak as he was 
preparing to submit it to journals. The p-value was 0.06, 
just shy of the gold standard cutoff of 0.05. It was a 
“sticking point,” as he put it in a Jan. 7, 2012, email. … “It 
seems to me it should be lower,” he wrote, attaching a 
draft. “Do you want to take a look at it and see what 
you think. If you can get the data, and it needs some 
tweeking, it would be good to get that one value below 
.05.” … Later in 2012, the study appeared in the 
prestigious JAMA Pediatrics, the 0.06 p-value intact. But 
in September 2017, it was retracted and replaced with a 
version that listed a p-value of 0.02. And a month later, it 
was retracted yet again for an entirely different reason: 
Wansink admitted that the experiment had not been 
done on 8- to 11-year-olds, as he’d originally claimed, but 
on preschoolers. 

This kind of behavior finally caught up with Wansink; fifteen 
of his research studies have been retracted and in 2018 he 
resigned from his faculty position at Cornell University. 

The reproducibility crisis in science 

While we think that the kind of frauduent behavior seen in 
Wansink’s case is relatively rare, it has become increasingly 
clear that problems with reproducibility are much more 
widespread in science than previously thought. This became 
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particularly evident in 2015, when a large group of researchers 
published a study in the journal Science titled “Estimating the 
reproducibility of psychological science”(Open Science 
Collaboration 2015). In this paper, the researchers took 100 
published studies in psychology and attempted to reproduce 
the results originally reported in the papers. Their findings were 
shocking: Whereas 97% of the original papers had reported 
statistically significant findings, only 37% of these effects were 
statistically significant in the replication study. Although these 
problems in psychology have received a great deal of attention, 
they seem to be present in nearly every area of science, from 
cancer biology (Errington et al. 2014) and chemistry (Baker 
2017) to economics (Christensen and Miguel 2016) and the 
social sciences (Camerer et al. 2018). 

The reproducibility crisis that emerged after 2010 was 
actually predicted by John Ioannidis, a physician from Stanford 
who wrote a paper in 2005 titled “Why most published 
research findings are false”(Ioannidis 2005). In this article, 
Ioannidis argued that the use of null hypothesis statistical 
testing in the context of modern science will necessarily lead 
to high levels of false results. Additionally, statistical power 
remains low in many areas of science (Smaldino and McElreath, 
2016), suggesting that many published research findings are 
false. An amusing example of this was seen in a paper by 
Jonathan Schoenfeld and John Ioannidis, titled “Is everything 
we eat associated with cancer? A systematic cookbook 
review”(Schoenfeld and Ioannidis, 2013). They examined a large 
number of papers that had assessed the relation between 
different foods and cancer risk, and found that 80% of 
ingredients had been associated with either increased or 
decreased cancer risk. In most of these cases, the statistical 
evidence was weak, and when the results were combined 
across studies, the result was null. 
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Low power 

Another kind of error can also occur when statistical power 
is low: Our estimates of the effect size will be inflated. This 
phenomenon often goes by the term “winner’s curse”, which 
comes from economics, where it refers to the fact that for 
certain types of auctions (where the value is the same for 
everyone, like a jar of quarters, and the bids are private), the 
winner is guaranteed to pay more than the good is worth. In 
science, the winner’s curse refers to the fact that the effect 
size estimated from a significant result (i.e. a winner) is almost 
always an overestimate of the true effect size. 

We can simulate this in order to see how the estimated effect 
size for significant results is related to the actual underlying 
effect size. Let’s generate data for which there is a true effect 
size of d = 0.2, and estimate the effect size for those results 
where there is a significant effect detected. The left panel of 
Figure 20.2 shows that when power is low, the estimated effect 
size for significant results can be highly inflated compared to 
the actual effect size. 

Figure 20.2: Left: A simulation of the winner’s curse as a 
function of statistical power (x axis). The solid line shows the 
estimated effect size, and the dotted line shows the actual 
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effect size. Right: A histogram showing effect size estimates for 
a number of samples from a dataset, with significant results 
shown in blue and non-significant results in red. 

We can look at a single simulation to see why this is the case. 
In the right panel of Figure 20.2, you can see a histogram of the 
estimated effect sizes for 1000 samples, separated by whether 
the test was statistically significant. It should be clear from 
the figure that if we estimate the effect size only based on 
significant results, then our estimate will be inflated; only when 
most results are significant (i.e. power is high and the effect is 
relatively large) will our estimate come near the actual effect 
size. 

Questionable research practices (QRPs) 

A popular book entitled “The Compleat Academic: A Career 
Guide”, published by the American Psychological Association 
(Darley, Zanna, and Roediger, 2004), aims to provide aspiring 
researchers with guidance on how to build a career. In a 
chapter by well-known social psychologist Daryl Bem titled 
“Writing the Empirical Journal Article”, Bem provides some 
suggestions about how to write a research paper. 
Unfortunately, the practices that he suggests are deeply 
problematic, and have come to be known as questionable 
research practices (QRPs). 

Which article should you write? There are two possible 
articles you can write: (1) the article you planned to write 
when you designed your study or (2) the article that 
makes the most sense now that you have seen the 
results. They are rarely the same, and the correct answer 
is (2). 

What Bem suggests here is known as HARKing (Hypothesizing 
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After the Results are Known)(Kerr, 1998). This might seem 
innocuous, but is problematic because it allows the researcher 
to re-frame a post-hoc conclusion (which we should take with 
a grain of salt) as an a priori prediction (in which we would have 
stronger faith). In essence, it allows the researcher to rewrite 
their theory based on the facts, rather that using the theory 
to make predictions and then test them – akin to moving the 
goalpost so that it ends up wherever the ball goes. It thus 
becomes very difficult to disconfirm incorrect ideas, since the 
goalpost can always be moved to match the data. Bem 
continues: 

Analyzing data Examine them from every angle. 
Analyze the sexes separately. Make up new composite 
indices. If a datum suggests a new hypothesis, try to 
find further evidence for it elsewhere in the data. If you 
see dim traces of interesting patterns, try to reorganize 
the data to bring them into bolder relief. If there are 
participants you don’t like, or trials, observers, or 
interviewers who gave you anomalous results,drop 
them (temporarily). Go on a fishing expedition for 
something — anything — interesting. No, this is not 
immoral. 

What Bem suggests here is known as p-hacking, which refers 
to trying many different analyses until one finds a significant 
result. Bem is correct that if one were to report every analysis 
done on the data then this approach would not be “immoral”. 
However, it is rare to see a paper discuss all of the analyses 
that were performed on a dataset; rather, papers often only 
present the analyses that worked – which usually means that 
they found a statistically significant result. There are many 
different ways that one might p-hack: 

• Analyze data after every subject, and stop collecting data 
once p<.05 
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• Analyze many different variables, but only report those 
with p<.05 

• Collect many different experimental conditions, but only 
report those with p<.05 

• Exclude participants to get p<.05 
• Transform the data to get p<.05 

A well-known paper by Simmons, Nelson, and Simonsohn 
(2011) showed that the use of these kinds of p-hacking 
strategies could greatly increase the actual false positive rate, 
resulting in a high number of false positive results. 

ESP or QRP? 

In 2011, that same Daryl Bem published an article 
(Bem, 2011) that claimed to have found scientific 
evidence for extrasensory perception (ESP). The 
article states: 

This article reports 9 experiments, involving 
more than 1,000 participants, that test for 
retroactive influence by “time-reversing” 
well-established psychological effects so that 
the individual’s responses are obtained 
before the putatively causal stimulus events 
occur. …The mean effect size (d) in psi 
performance across all 9 experiments was 
0.22, and all but one of the experiments 
yielded statistically significant results. 

As researchers began to examine Bem’s article, it 
became clear that he had engaged in all of the 
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QRPs that he had recommended in the chapter 
discussed above. As Tal Yarkoni pointed out in a blog 
post that examined the article: 

• Sample sizes varied across studies 
• Different studies appear to have been 

lumped together or split apart 
• The studies allow many different hypotheses, 

and it’s not clear which were planned in 
advance 

• Bem used one-tailed tests even when it’s not 
clear that there was a directional prediction (so 
alpha is really 0.1) 

• Most of the p-values are very close to 0.05 
• It’s not clear how many other studies were 

run but not reported 

Doing reproducible research 

In the years since the reproducibility crisis arose, there has been 
a robust movement to develop tools to help protect the 
reproducibility of scientific research. 

Pre-registration 

One of the ideas that has gained the greatest traction is pre-
registration, in which one submits a detailed description of 
a study (including all data analyses) to a trusted repository 
(such as the Open Science Framework or AsPredicted.org). By 
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specifying one’s plans in detail prior to analyzing the data, pre-
registration provides greater faith that the analyses do not 
suffer from p-hacking or other questionable research practices. 

The effects of pre-registration in clinical trials in medicine 
have been striking. In 2000, the National Heart, Lung, and 
Blood Institute (NHLBI) began requiring all clinical trials to be 
pre-registered using the system at ClinicalTrials.gov. This 
provides a natural experiment to observe the effects of study 
pre-registration. When Kaplan and Irvin (2015) examined 
clinical trial outcomes over time, they found that the number 
of positive outcomes in clinical trials was greatly reduced after 
2000 compared to before. While there are many possible 
causes, it seems likely that prior to study registration 
researchers were able to change their methods or hypotheses 
in order to find a positive result, which became more difficult 
after registration was required. 

Reproducible practices 

The paper by Simmons, Nelson, and Simonsohn (2011) laid out 
a set of suggested practices for making research more 
reproducible, all of which should become standard for 
researchers: 

• Authors must decide the rule for terminating data 
collection before data collection begins and report 
this rule in the article. 

• Authors must collect at least 20 observations per 
cell or else provide a compelling cost-of-data-
collection justification. 

• Authors must list all variables collected in a study. 
• Authors must report all experimental conditions, 

including failed manipulations. 
• If observations are eliminated, authors must also 
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report what the statistical results are if those 
observations are included. 

• If an analysis includes a covariate, authors must 
report the statistical results of the analysis without 
the covariate. 

Replication 

One of the hallmarks of science is the idea of replication – 
that is, other researchers should be able to perform the same 
study and obtain the same result. Unfortunately, as we saw in 
the outcome of the Replication Project discussed earlier, many 
findings are not replicable. The best way to ensure replicability 
of one’s research is to first replicate it on your own; for some 
studies this just won’t be possible, but whenever it is possible 
one should make sure that one’s finding holds up in a new 
sample. That new sample should be sufficiently powered to 
find the effect size of interest; in many cases, this will actually 
require a larger sample than the original. 

It’s important to keep a couple of things in mind with regard 
to replication. First, the fact that a replication attempt fails does 
not necessarily mean that the original finding was false; 
remember that with the standard level of 80% power, there is 
still a one in five chance that the result will be nonsignificant, 
even if there is a true effect. For this reason, we generally want 
to see multiple replications of any important finding before 
we decide whether or not to believe it. Unfortunately, many 
fields including psychology have failed to follow this advice in 
the past, leading to “textbook” findings that turn out to be 
likely false. With regard to Daryl Bem’s studies of ESP, a large 
replication attempt involving 7 studies failed to replicate his 
findings (Galak et al. 2012). 

Second, remember that the p-value doesn’t provide us with 
a measure of the likelihood of a finding to replicate. As we 
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discussed previously, the p-value is a statement about the 
likelihood of one’s data under a specific null hypothesis; it 
doesn’t tell us anything about the probability that the finding 
is actually true (as we learned in the chapter on Bayesian 
analysis). In order to know the likelihood of replication we need 
to know the probability that the finding is true, which we 
generally don’t know. 

Doing reproducible data analysis 

So far we have focused on the ability to replicate other 
researchers’ findings in new experiments, but another 
important aspect of reproducibility is to be able to reproduce 
someone’s analyses on their own data, which we refer to a 
computational reproducibility. This requires that researchers 
share both their data and their analysis code, so that other 
researchers can both try to reproduce the result as well as 
potentially test different analysis methods on the same data. 
There is an increasing move in psychology towards open 
sharing of code and data; for example, the journal 
Psychological Science now provides “badges” to papers that 
share research materials, data, and code, as well as for pre-
registration. 

The ability to reproduce analyses is one reason that we 
strongly advocate for the use of scripted analyses (such as 
those using R) rather than using a “point-and-click” software 
package. It’s also a reason that we advocate the use of free 
and open-source software (like R) as opposed to commercial 
software packages, which would require others to buy the 
software in order to reproduce any analyses. 

There are many ways to share both code and data. A 
common way to share code is via web sites that support version 
control for software, such as Github. Small datasets can also 
be shared via these same sites; larger datasets can be shared 
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through data sharing portals such as Zenodo, or through 
specialized portals for specific types of data (such as 
OpenNeuro for neuroimaging data). 

Conclusion: Doing better science 

It is every scientist’s responsibility to improve their research 
practices in order to increase the reproducibility of their 
research. It is essential to remember that the goal of research 
is not to find a significant result; rather, it is to ask and answer 
questions about nature in the most truthful way possible. Most 
of our hypotheses will be wrong, and we should be comfortable 
with that, so that when we find one that’s right, we will be even 
more confident in its truth. 

Learning objectives 

• Describe the concept of P-hacking and its effects on 
scientific practice 

• Describe the concept of positive predictive value and its 
relation to statistical power 

• Describe the concept of pre-registration and how it can 
help protect against questionable research practices 

Suggested Readings 

• Rigor Mortis: How Sloppy Science Creates Worthless Cures, 
Crushes Hope, and Wastes Billions, by Richard Harris 

• Improving your statistical inferences – an online course on 
how to do better statistical analysis, including many of the 
points raised in this chapter. 
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Appendix 

More resources to be added.  For no, there is no appendix. 
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